Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 89(5): 1305-14, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21184058

RESUMO

Pressure as a thermodynamical parameter was successively introduced in physics, hydrometallurgy, geochemistry, and biology. In all cases, the main objective was to recreate a natural phenomenon (gas or liquid compressibility, synthesis or crystal growth of minerals, survival of deep sea microorganisms…). The introduction of high hydrostatic pressure (HHP) in Biology was an important scientific feature over the last hundred years. This paper describes the different steps that have led to the spreading of pressure in biology and the opening of new frontiers either in basic and applied researches due to the specific characteristics of the pressure parameter. Because of the low energy conveyed by this parameter, leading to the preservation of most organoleptic properties of foods, and its ability to inactivate many pathogens, the use of HHP began to spread at the end of the twentieth century into the food industry, in particular for the development of pathogen inactivation processes. Today, even if this field is still the first application domain for HHP, more and more research works have shown that this parameter could be of great interest in health and medicine sciences.


Assuntos
Biologia/história , Pressão Hidrostática , Estresse Fisiológico , Desinfecção/métodos , Conservação de Alimentos/métodos , História do Século XX , História do Século XXI
2.
N Biotechnol ; 29(3): 409-14, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22008386

RESUMO

For the past 30years, pressure inactivation of microorganisms has been developed in biosciences, in particular for foods and more recently for biological products, including pharmaceutical ones. In many past studies, the effect of high hydrostatic pressure (HHP) processes on pathogens focused mainly on the effect of an increase of the pressure value. To assure the safety of pharmaceutical products containing fragile therapeutic components, development of new decontamination processes at the lowest pressure value is needed to maintain their therapeutic properties. The aim of this study was therefore to evaluate the impact of the process parameters characterizing high-pressure treatments [such as the pressurization rate (PR) and the application mode (AM)] on the inactivation of pathogens, in particular to determine how these parameters values could help decrease the pressure value necessary to reach the same inactivation level. The effect of these physical parameters was evaluated on the inactivation of Staphylococcus aureus ATCC 6538 which is an opportunistic pathogen of important relevance in the medical, pharmaceutical and food domains. Human blood plasma was chosen as the suspension medium because of its physiological importance in the transfusion field. It was shown that the optimization of all the selected parameters could lead to a high inactivation level (≈5log(10) decrease of the initial bacterial load) at a pressure level as low as 200MPa, underlining some synergistic effects among these parameters. Complete inactivation of the initial bacterial population was achieved for the following conditions: PR=50MPas(-1), AM=5×2min, T≈-5°C and P=300MPa.


Assuntos
Desinfecção/métodos , Viabilidade Microbiana , Plasma/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus , Descontaminação/métodos , Humanos , Pressão Hidrostática
3.
Biotechnol Adv ; 28(6): 659-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20398747

RESUMO

Compared to temperature, the development of pressure as a tool in the research field has emerged only recently (at the end of the XIXth century). Following several developments in Physics and Chemistry during the first half of the XXth century (in particular the synthesis of diamond in 1953-1954), high pressures were applied in Food Science, especially in Japan. The main objective was then to achieve the decontamination of foods while preserving their organoleptic properties. Now, a new step is engaged: the biological applications of high pressures, from food to pharmaceuticals and biomedical applications. This paper will focus on three main points: (i) a brief presentation of the pressure parameter and its characteristics, (ii) a description of the pressure effects on biological constituents from simple to more complex structures and (iii) a review of the different domains for which the application of high pressures is able to initiate potential developments in Biotechnologies.


Assuntos
Biotecnologia/métodos , Substâncias Macromoleculares/química , Pesquisa Biomédica , Biotecnologia/tendências , Pressão Hidrostática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa