Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 299(2): 102859, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592930

RESUMO

Translesion synthesis (TLS) DNA polymerase Polζ is crucial for the bypass replication over sites of DNA damage. The Rev7 subunit of Polζ is a HORMA (Hop1, Rev7, Mad2) protein that facilitates recruitment of Polζ to the replication fork via interactions with the catalytic subunit Rev3 and the translesion synthesis scaffold protein Rev1. Human Rev7 (hRev7) interacts with two Rev7-binding motifs (RBMs) of hRev3 by a mechanism conserved among HORMA proteins whereby the safety-belt loop of hRev7 closes on the top of the ligand. The two copies of hRev7 tethered by the two hRev3-RBMs form a symmetric head-to-head dimer through the canonical HORMA dimerization interface. Recent cryo-EM structures reveal that Saccharomyces cerevisiae Polζ (scPolζ) also includes two copies of scRev7 bound to distinct regions of scRev3. Surprisingly, the HORMA dimerization interface is not conserved in scRev7, with the two scRev7 protomers forming an asymmetric head-to-tail dimer with a much smaller interface than the hRev7 dimer. Here, we validated the two adjacent RBM motifs in scRev3, which bind scRev7 with affinities that differ by two orders of magnitude and confirmed the 2:1 stoichiometry of the scRev7:Rev3 complex in solution. However, our biophysical studies reveal that scRev7 does not form dimers in solution either on its own accord or when tethered by the two RBMs in scRev3. These findings imply that the scRev7 dimer observed in the cryo-EM structures is induced by scRev7 interactions with other Polζ subunits and that Rev7 homodimerization via the HORMA interface is a mechanism that emerged later in evolution.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Humanos , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Nucleotidiltransferases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(35): E8191-E8200, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30111544

RESUMO

The translesion synthesis (TLS) polymerases Polζ and Rev1 form a complex that enables replication of damaged DNA. The Rev7 subunit of Polζ, which is a multifaceted HORMA (Hop1, Rev7, Mad2) protein with roles in TLS, DNA repair, and cell-cycle control, facilitates assembly of this complex by binding Rev1 and the catalytic subunit of Polζ, Rev3. Rev7 interacts with Rev3 by a mechanism conserved among HORMA proteins, whereby an open-to-closed transition locks the ligand underneath the "safety belt" loop. Dimerization of HORMA proteins promotes binding and release of this ligand, as exemplified by the Rev7 homolog, Mad2. Here, we investigate the dimerization of Rev7 when bound to the two Rev7-binding motifs (RBMs) in Rev3 by combining in vitro analyses of Rev7 structure and interactions with a functional assay in a Rev7-/- cell line. We demonstrate that Rev7 uses the conventional HORMA dimerization interface both to form a homodimer when tethered by the two RBMs in Rev3 and to heterodimerize with other HORMA domains, Mad2 and p31comet Structurally, the Rev7 dimer can bind only one copy of Rev1, revealing an unexpected Rev1/Polζ architecture. In cells, mutation of the Rev7 dimer interface increases sensitivity to DNA damage. These results provide insights into the structure of the Rev1/Polζ TLS assembly and highlight the function of Rev7 homo- and heterodimerization.


Assuntos
Proteínas Mad2 , Proteínas Nucleares , Nucleotidiltransferases , Multimerização Proteica , Linhagem Celular , Dano ao DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Proteínas Mad2/química , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Domínios Proteicos
3.
Biophys J ; 117(3): 587-601, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31349986

RESUMO

The ring-shaped sliding clamp proteins have crucial roles in the regulation of DNA replication, recombination, and repair in all organisms. We previously showed that the Escherichia coli ß-clamp is dynamic in solution, transiently visiting conformational states in which Domain 1 at the dimer interface is more flexible and prone to unfolding. This work aims to understand how the stability of the dimer interface influences clamp-opening dynamics and clamp loading by designing and characterizing stabilizing and destabilizing mutations in the clamp. The variants with stabilizing mutations conferred similar or increased thermostability and had similar quaternary structure as compared to the wild type. These variants stimulated the ATPase function of the clamp loader, complemented cell growth of a temperature-sensitive strain, and were successfully loaded onto a DNA substrate. The L82D and L82E I272A variants with purported destabilizing mutations had decreased thermostability, did not complement the growth of a temperature-sensitive strain, and had weakened dimerization as determined by native trapped ion mobility spectrometry-mass spectrometry. The ß L82E variant had a reduced melting temperature but dimerized and complemented growth of a temperature-sensitive strain. All three clamps with destabilizing mutations had perturbed loading on DNA. Molecular dynamics simulations indicate altered hydrogen-bonding patterns at the dimer interface, and cross-correlation analysis showed the largest perturbations in the destabilized variants, consistent with the observed change in the conformations and functions of these clamps.


Assuntos
DNA Polimerase III/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Multimerização Proteica , DNA Polimerase III/genética , Estabilidade Enzimática , Escherichia coli/crescimento & desenvolvimento , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Mutação/genética , Temperatura , Moldes Genéticos
4.
J Chem Inf Model ; 58(11): 2266-2277, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30289707

RESUMO

Translesion synthesis (TLS) is a mechanism of replication past damaged DNA through which multiple forms of human cancer survive and acquire resistance to first-line genotoxic chemotherapies. As such, TLS is emerging as a promising target for the development of a new class of anticancer agents. The C-terminal domain of the DNA polymerase Rev1 (Rev1-CT) mediates assembly of the functional TLS complex through protein-protein interactions (PPIs) with Rev1 interacting regions (RIRs) of several other TLS DNA polymerases. Utilizing structural knowledge of the Rev1-CT/RIR interface, we have identified the phenazopyridine scaffold as an inhibitor of this essential TLS PPI. We demonstrate direct binding of this scaffold to Rev1-CT, and the synthesis and evaluation of a small series of analogues have provided important structure-activity relationships for further development of this scaffold. Furthermore, we utilized the umbrella sampling method to predict the free energy of binding to Rev1-CT for each of our analogues. Binding energies calculated through umbrella sampling correlated well with experimentally determined IC50 values, validating this computational tool as a viable approach to predict the biological activity for inhibitors of the Rev1-CT/RIR PPI.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Fenazopiridina/análogos & derivados , Fenazopiridina/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Termodinâmica
5.
Bioorg Med Chem ; 26(14): 4301-4309, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037752

RESUMO

Translesion synthesis (TLS) is a DNA damage tolerance mechanism that allows replicative bypass of DNA lesions, including DNA adducts formed by cancer chemotherapeutics. Previous studies demonstrated that suppression of TLS can increase sensitivity of cancer cells to first-line chemotherapeutics and decrease mutagenesis linked to the onset of chemoresistance, marking the TLS pathway as an emerging therapeutic target. TLS is mediated by a heteroprotein complex consisting of specialized DNA polymerases, including the Y-family DNA polymerase Rev1. Previously, we developed a screening assay to identify the first small molecules that disrupt the protein-protein interaction between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) present in multiple DNA polymerases involved in TLS. Herein we report additional hit scaffolds that inhibit this key TLS PPI. In addition, through a series of biochemical, computational, and cellular studies we have identified preliminary structure-activity relationships and determined initial pharmacokinetic parameters for our original hits.


Assuntos
Antineoplásicos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Nucleotidiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
6.
Biochemistry ; 55(13): 2043-53, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26982350

RESUMO

Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι, or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Polη, Polι, or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , Replicação do DNA , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Motivos de Aminoácidos , Animais , Ligação Competitiva , DNA Polimerase III/química , DNA Polimerase III/genética , Cinética , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
7.
Biochemistry ; 53(37): 5895-906, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25162118

RESUMO

Ubiquitin-mediated interactions are critical for the cellular DNA damage response (DDR). Therefore, many DDR-related proteins contain ubiquitin-binding domains, including ubiquitin-binding zinc fingers (UBZs). The majority of these UBZ domains belong to the C2H2 (type 3 Polη-like) or C2HC (type 4 Rad18-like) family. We have used nuclear magnetic resonance (NMR) spectroscopy to characterize the binding to ubiquitin and determine the structure of the type 4 UBZ domain (UBZ4) from human Rad18, which is a key ubiquitin ligase in the DNA damage tolerance pathway responsible for monoubiquitination of the DNA sliding clamp PCNA. The Rad18-UBZ domain binds ubiquitin with micromolar affinity and adopts a ß1-ß2-α fold similar to the previously characterized type 3 UBZ domain (UBZ3) from the translesion synthesis DNA polymerase Polη. However, despite nearly identical structures, a disparity in the location of binding-induced NMR chemical shift perturbations shows that the Rad18-UBZ4 and Polη-UBZ3 domains bind ubiquitin in distinctly different modes. The Rad18-UBZ4 domain interacts with ubiquitin with the α-helix and strand ß1 as shown by the structure of the Rad18-UBZ domain-ubiquitin complex determined in this work, while the Polη-UBZ3 domain exclusively utilizes the α-helix. Our findings suggest the existence of two classes of UBZ domains in DDR-related proteins with similar structures but unique ubiquitin binding properties and provide context for further study to establish the differential roles of these domains in the complex cellular response to DNA damage.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ubiquitina/metabolismo , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/química , Humanos , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Terciária de Proteína , Ubiquitina/química , Ubiquitina-Proteína Ligases , Dedos de Zinco
8.
ChemMedChem ; 16(7): 1126-1132, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33314657

RESUMO

Rev1 is a protein scaffold of the translesion synthesis (TLS) pathway, which employs low-fidelity DNA polymerases for replication of damaged DNA. The TLS pathway helps cancers tolerate DNA damage induced by genotoxic chemotherapy, and increases mutagenesis in tumors, thus accelerating the onset of chemoresistance. TLS inhibitors have emerged as potential adjuvant drugs to enhance the efficacy of first-line chemotherapy, with the majority of reported inhibitors targeting protein-protein interactions (PPIs) of the Rev1 C-terminal domain (Rev1-CT). We previously identified phenazopyridine (PAP) as a scaffold to disrupt Rev1-CT PPIs with Rev1-interacting regions (RIRs) of TLS polymerases. To explore the structure-activity relationships for this scaffold, we developed a protocol for co-crystallization of compounds that target the RIR binding site on Rev1-CT with a triple Rev1-CT/Rev7R124A /Rev3-RBM1 complex, and solved an X-ray crystal structure of Rev1-CT bound to the most potent PAP analogue. The structure revealed an unexpected binding pose of the compound and informed changes to the scaffold to improve its affinity for Rev1-CT. We synthesized eight additional PAP derivatives, with modifications to the scaffold driven by the structure, and evaluated their binding to Rev1-CT by microscale thermophoresis (MST). Several second-generation PAP derivatives showed an affinity for Rev1-CT that was improved by over an order of magnitude, thereby validating the structure-based assumptions that went into the compound design.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Fenazopiridina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Fenazopiridina/síntese química , Fenazopiridina/química , Relação Estrutura-Atividade
9.
Enzymes ; 45: 139-181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31627876

RESUMO

DNA contains information that must be safeguarded, but also accessed for transcription and replication. To perform replication, eukaryotic cells use the B-family DNA polymerase enzymes Polδ and Polɛ, which are optimized for accuracy, speed, and processivity. The molecular basis of these high-performance characteristics causes these replicative polymerases to fail at sites of DNA damage (lesions), which would lead to genomic instability and cell death. To avoid this, cells possess additional DNA polymerases such as the Y-family of polymerases and the B-family member Polζ that can replicate over sites of DNA damage in a process called translesion synthesis (TLS). While able to replicate over DNA lesions, the TLS polymerases exhibit low-fidelity on undamaged DNA and, consequently, must be prevented from replicating DNA under normal circumstances and recruited only when necessary. The replicative bypass of most types of DNA lesions requires the consecutive action of these specialized TLS polymerases assembled into a dynamic multiprotein complex called the Rev1/Polζ mutasome. To this end, posttranslational modifications and a network of protein-protein interactions mediated by accessory domains/subunits of the TLS polymerases control the assembly and rearrangements of the Rev1/Polζ mutasome and recruitment of TLS proteins to sites of DNA damage. This chapter focuses on the structures and interactions that control these processes underlying the function of the Rev1/Polζ mutasome, as well as the development of small molecule inhibitors of the Rev1/Polζ-dependent TLS holding promise as a potential anticancer therapy.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
10.
ChemMedChem ; 14(17): 1610-1617, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31361935

RESUMO

Translesion synthesis (TLS) has emerged as a mechanism through which several forms of cancer develop acquired resistance to first-line genotoxic chemotherapies by allowing replication to continue in the presence of damaged DNA. Small molecules that inhibit TLS hold promise as a novel class of anticancer agents that can serve to enhance the efficacy of these front-line therapies. We previously used a structure-based rational design approach to identify the phenazopyridine scaffold as an inhibitor of TLS that functions by disrupting the protein-protein interaction (PPI) between the C-terminal domain of the TLS DNA polymerase Rev1 (Rev1-CT) and the Rev1 interacting regions (RIR) of other TLS DNA polymerases. To continue the identification of small molecules that disrupt the Rev1-CT/RIR PPI, we generated a pharmacophore model based on the phenazopyridine scaffold and used it in a structure-based virtual screen. In vitro analysis of promising hits identified several new chemotypes with the ability to disrupt this key TLS PPI. In addition, several of these compounds were found to enhance the efficacy of cisplatin in cultured cells, highlighting their anti-TLS potential.


Assuntos
Compostos Azo/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotidiltransferases/metabolismo , Ligação Proteica/efeitos dos fármacos , Piridinas/farmacologia , Animais , DNA Polimerase Dirigida por DNA/química , Avaliação Pré-Clínica de Medicamentos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nucleotidiltransferases/química , Domínios Proteicos
11.
Biomol NMR Assign ; 11(2): 169-173, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28265855

RESUMO

The ß-clamp protein and the γ clamp loader complex are essential components of bacterial DNA replication machinery. The ß-clamp is a ring-shaped homodimer that encircles DNA and increases the efficiency of replication by providing a binding platform for DNA polymerases and other replication-related proteins. The ß-clamp is loaded onto DNA by the five-subunit γ clamp loader complex in a multi-step ATP-dependent process. The initial steps of this process involve the cooperative binding of the ß-clamp by the five subunits of ATP-bound clamp loader, which induces or traps an open conformation of the clamp. Remarkably, the δ subunit of the E. coli clamp loader, or even its 140 residue N-terminal domain (called mini-δ), alone can shift conformational equilibrium of the ß-clamp towards the open state. Here we report nearly complete backbone and side-chain 1H, 13C and 15N NMR resonance assignments of mini-δ that will facilitate NMR studies of the mechanisms of ß-clamp opening and its loading on DNA by the clamp loader.


Assuntos
Proteínas de Escherichia coli/química , Subunidades Proteicas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos
12.
ACS Chem Biol ; 12(7): 1903-1912, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28541665

RESUMO

Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.


Assuntos
DNA Polimerase Dirigida por DNA , Sistemas de Liberação de Medicamentos , Proteínas Nucleares/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Nucleotidiltransferases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Nucleares/genética , Inibidores da Síntese de Ácido Nucleico/química , Nucleotidiltransferases/genética , Proteínas/química , Bibliotecas de Moléculas Pequenas/química
13.
Structure ; 22(6): 830-41, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24836025

RESUMO

Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded ß-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the ß-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core.


Assuntos
Bacteriófago P22/química , Bacteriófago P22/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Eletricidade Estática
14.
Biomol NMR Assign ; 7(2): 257-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22987227

RESUMO

The bacteriophage P22 virion is assembled from identical coat protein monomers in a complex reaction that is generally conserved among tailed, double-stranded DNA bacteriophages and viruses. Many coat proteins of dsDNA viruses have structures based on the HK97 fold, but in some viruses and phages there are additional domains. In the P22 coat protein, a "telokin-like" domain was recently identified, whose structure has not yet been characterized at high-resolution. Two recently published low-resolution cryo-EM reconstructions suggest markedly different folds for the telokin-like domain that lead to alternative conclusions about its function in capsid assembly and stability. Here we report (1)H, (15)N, and (13)C NMR resonance assignments for the telokin-like domain. The secondary structure predicted from the chemical shift values obtained in this work shows significant discrepancies from both cryo-EM models but agrees better with one of the models. In particular, the functionally important "D-loop" in one model shows chemical shifts and solvent exchange protection more consistent with ß-sheet structure. Our work will set the basis for a high-resolution NMR structure determination of the telokin-like domain that will help improve the cryo-EM models, and in turn lead to a better understanding of how coat protein monomers assemble into the icosahedral capsids required for virulence.


Assuntos
Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Quinase de Cadeia Leve de Miosina/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa