Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(4): 1464-1534, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314694

RESUMO

Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes
2.
Adv Funct Mater ; 32(8)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35603230

RESUMO

We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings. This study paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.

3.
Adv Funct Mater ; 32(25)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36381629

RESUMO

The Utah array powers cutting-edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual-side lithographic microfabrication processes is exploited to demonstrate a 1024-channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air-puff stimuli. Significantly, the 1024-channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain-machine interfaces.

4.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749727

RESUMO

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Adulto , Animais , Estimulação Elétrica , Eletroencefalografia , Fenômenos Eletrofisiológicos , Epilepsia/fisiopatologia , Espaço Extracelular/fisiologia , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microeletrodos , Pessoa de Meia-Idade , Córtex Somatossensorial/fisiologia , Análise de Ondaletas , Adulto Jovem
5.
Nano Lett ; 17(5): 2757-2764, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28384403

RESUMO

We report a new hybrid integration scheme that offers for the first time a nanowire-on-lead approach, which enables independent electrical addressability, is scalable, and has superior spatial resolution in vertical nanowire arrays. The fabrication of these nanowire arrays is demonstrated to be scalable down to submicrometer site-to-site spacing and can be combined with standard integrated circuit fabrication technologies. We utilize these arrays to perform electrophysiological recordings from mouse and rat primary neurons and human induced pluripotent stem cell (hiPSC)-derived neurons, which revealed high signal-to-noise ratios and sensitivity to subthreshold postsynaptic potentials (PSPs). We measured electrical activity from rodent neurons from 8 days in vitro (DIV) to 14 DIV and from hiPSC-derived neurons at 6 weeks in vitro post culture with signal amplitudes up to 99 mV. Overall, our platform paves the way for longitudinal electrophysiological experiments on synaptic activity in human iPSC based disease models of neuronal networks, critical for understanding the mechanisms of neurological diseases and for developing drugs to treat them.


Assuntos
Nanofios/química , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Microeletrodos , Células-Tronco Neurais/citologia , Neurônios/citologia , Tamanho da Partícula , Ratos
6.
Small ; 13(21)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371293

RESUMO

The growth and characterization of an n-GaP/i-GaNP/p+ -GaP thin film heterojunction synthesized using a gas-source molecular beam epitaxy (MBE) method, and its application for efficient solar-driven water oxidation is reported. The TiO2 /Ni passivated n-GaP/i-GaNP/p+ -GaP thin film heterojunction provides much higher photoanodic performance in 1 m KOH solution than the TiO2 /Ni-coated n-GaP substrate, leading to much lower onset potential and much higher photocurrent. There is a significant photoanodic potential shift of 764 mV at a photocurrent of 0.34 mA cm-2 , leading to an onset potential of ≈0.4 V versus reversible hydrogen electrode (RHE) at 0.34 mA cm-2 for the heterojunction. The photocurrent at the water oxidation potential (1.23 V vs RHE) is 1.46 and 7.26 mA cm-2 for the coated n-GaP and n-GaP/i-GaNP/p+ -GaP photoanodes, respectively. The passivated heterojunction offers a maximum applied bias photon-to-current efficiency (ABPE) of 1.9% while the ABPE of the coated n-GaP sample is almost zero. Furthermore, the coated n-GaP/i-GaNP/p+ -GaP heterojunction photoanode provides a broad absorption spectrum up to ≈620 nm with incident photon-to-current efficiencies (IPCEs) of over 40% from ≈400 to ≈560 nm. The high low-bias performance and broad absorption of the wide-bandgap GaP/GaNP heterojunctions render them as a promising photoanode material for tandem photoelectrochemical (PEC) cells to carry out overall solar water splitting.

7.
Nano Lett ; 15(11): 7258-64, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26447652

RESUMO

Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been explored before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. Synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.

8.
J Neurosurg ; 140(3): 665-676, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874692

RESUMO

OBJECTIVE: The study objective was to evaluate intraoperative experience with newly developed high-spatial-resolution microelectrode grids composed of poly(3,4-ethylenedioxythiophene) with polystyrene sulfonate (PEDOT:PSS), and those composed of platinum nanorods (PtNRs). METHODS: A cohort of patients who underwent craniotomy for pathological tissue resection and who had high-spatial-resolution microelectrode grids placed intraoperatively were evaluated. Patient demographic and baseline clinical variables as well as relevant microelectrode grid characteristic data were collected. The primary and secondary outcome measures of interest were successful microelectrode grid utilization with usable resting-state or task-related data, and grid-related adverse intraoperative events and/or grid dysfunction. RESULTS: Included in the analysis were 89 cases of patients who underwent a craniotomy for resection of neoplasms (n = 58) or epileptogenic tissue (n = 31). These cases accounted for 94 grids: 58 PEDOT:PSS and 36 PtNR grids. Of these 94 grids, 86 were functional and used successfully to obtain cortical recordings from 82 patients. The mean cortical grid recording duration was 15.3 ± 1.15 minutes. Most recordings in patients were obtained during experimental tasks (n = 52, 58.4%), involving language and sensorimotor testing paradigms, or were obtained passively during resting state (n = 32, 36.0%). There were no intraoperative adverse events related to grid placement. However, there were instances of PtNR grid dysfunction (n = 8) related to damage incurred by suboptimal preoperative sterilization (n = 7) and improper handling (n = 1); intraoperative recordings were not performed. Vaporized peroxide sterilization was the most optimal sterilization method for PtNR grids, providing a significantly greater number of usable channels poststerilization than did steam-based sterilization techniques (median 905.0 [IQR 650.8-935.5] vs 356.0 [IQR 18.0-597.8], p = 0.0031). CONCLUSIONS: High-spatial-resolution microelectrode grids can be readily incorporated into appropriately selected craniotomy cases for clinical and research purposes. Grids are reliable when preoperative handling and sterilization considerations are accounted for. Future investigations should compare the diagnostic utility of these high-resolution grids to commercially available counterparts and assess whether diagnostic discrepancies relate to clinical outcomes.


Assuntos
Sistemas Computacionais , Craniotomia , Humanos , Microeletrodos , Idioma , Peróxidos
9.
Nat Commun ; 15(1): 218, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233418

RESUMO

Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.


Assuntos
Encéfalo , Neurônios , Humanos , Encéfalo/fisiologia , Eletrodos , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Eletrodos Implantados
10.
Adv Sci (Weinh) ; 10(36): e2304598, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888859

RESUMO

In the domains of wearable electronics, robotics, and the Internet of Things, there is a demand for devices with low power consumption and the capability of multiplex sensing, memory, and learning. Triboelectric nanogenerators (TENGs) offer remarkable versatility in this regard, particularly when integrated with synaptic transistors that mimic biological synapses. However, conventional TENGs, generating only two spikes per cycle, have limitations when used in synaptic devices requiring repetitive high-frequency gating signals to perform various synaptic plasticity functions. Herein, a multi-layered micropatterned TENG (M-TENG) consisting of a polydimethylsiloxane (PDMS) film and a composite film that includes 1H,1H,2H,2H-perfluorooctyltrichlorosilane/BaTiO3 /PDMS are proposed. The M-TENG generates multiple spikes from a single touch by utilizing separate triboelectric charges at the multiple friction layers, along with a contact/separation delay achieved by distinct spacers between layers. This configuration allows the maximum triboelectric output charge of M-TENG to reach up to 7.52 nC, compared to 3.69 nC for a single-layered TENG. Furthermore, by integrating M-TENGs with an organic electrochemical transistor, the spike number multiplication property of M-TENGs is leveraged to demonstrate an artificial synaptic device with low energy consumption. As a proof-of-concept application, a robotic hand is operated through continuous memory training under repeated stimulations, successfully emulating long-term plasticity.

11.
Nat Commun ; 14(1): 359, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690639

RESUMO

Ion channels transduce external stimuli into ion-transport-mediated signaling, which has received considerable attention in diverse fields such as sensors, energy harvesting devices, and desalination membrane. In this work, we present a photosensitive ion channel based on plasmonic gold nanostars (AuNSs) and cellulose nanofibers (CNFs) embedded in layered MXene nanosheets. The MXene/AuNS/CNF (MAC) membrane provides subnanometer-sized ionic pathways for light-sensitive cationic flow. When the MAC nanochannel is exposed to NIR light, a photothermal gradient is formed, which induces directional photothermo-osmotic flow of nanoconfined electrolyte against the thermal gradient and produces a net ionic current. MAC membrane exhibits enhanced photothermal current compared with pristine MXene, which is attributed to the combined photothermal effects of plasmonic AuNSs and MXene and the widened interspacing of the MAC composite via the hydrophilic nanofibrils. The MAC composite membranes are envisioned to be applied in flexible ionic channels with ionogels and light-controlled ionic circuits.


Assuntos
Celulose , Nanofibras , Ouro , Cátions
12.
Sci Transl Med ; 14(628): eabj1441, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044788

RESUMO

Electrophysiological devices are critical for mapping eloquent and diseased brain regions and for therapeutic neuromodulation in clinical settings and are extensively used for research in brain-machine interfaces. However, the existing clinical and experimental devices are often limited in either spatial resolution or cortical coverage. Here, we developed scalable manufacturing processes with a dense electrical connection scheme to achieve reconfigurable thin-film, multithousand-channel neurophysiological recording grids using platinum nanorods (PtNRGrids). With PtNRGrids, we have achieved a multithousand-channel array of small (30 µm) contacts with low impedance, providing high spatial and temporal resolution over a large cortical area. We demonstrated that PtNRGrids can resolve submillimeter functional organization of the barrel cortex in anesthetized rats that captured the tissue structure. In the clinical setting, PtNRGrids resolved fine, complex temporal dynamics from the cortical surface in an awake human patient performing grasping tasks. In addition, the PtNRGrids identified the spatial spread and dynamics of epileptic discharges in a patient undergoing epilepsy surgery at 1-mm spatial resolution, including activity induced by direct electrical stimulation. Collectively, these findings demonstrated the power of the PtNRGrids to transform clinical mapping and research with brain-machine interfaces.


Assuntos
Mapeamento Encefálico , Epilepsia , Animais , Encéfalo/fisiologia , Estimulação Elétrica , Humanos , Ratos , Vigília
13.
Sci Rep ; 5: 8557, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25707903

RESUMO

Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa