Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39205070

RESUMO

Investigations of human brain disorders are frequently conducted in rodent models using magnetic resonance imaging. Due to the small specimen size and the increase in signal-to-noise ratio with the static magnetic field strength, dedicated small-bore animal scanners can be used to acquire high-resolution data. Ultra-high-field (≥7 T) whole-body human scanners are increasingly available, and they can also be used for animal investigations. Dedicated sensors, in this case, radiofrequency coils, are required to achieve sufficient sensitivity for the high spatial resolution needed for imaging small anatomical structures. In this work, a four-channel transceiver coil array for rat brain imaging at 7 T is presented, which can be adjusted for use on a wide range of differently sized rats, from infants to large adults. Three suitable array designs (with two to four elements covering the whole rat brain) were compared using full-wave 3D electromagnetic simulation. An optimized static B1+ shim was derived to maximize B1+ in the rat brain for both small and big rats. The design, together with a 3D-printed adjustable coil housing, was tested and validated in ex vivo rat bench and MRI measurements.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Ratos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Ondas de Rádio , Desenho de Equipamento , Humanos , Imagens de Fantasmas
2.
Magn Reson Med ; 87(3): 1174-1183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719061

RESUMO

PURPOSE: Lactate is a key metabolite in skeletal muscle and whole-body physiology. Its MR visibility in muscle is affected by overlapping lipid signals and fiber orientation. Double-quantum filtered (DQF) 1 H MRS selectively detects lactate at 1.3 ppm, but at ultra-high field the efficiency of slice-selective 3D-localization with conventional RF pulses is limited by bandwidth. This novel 3D-localized 1 H DQF MRS sequence uses adiabatic refocusing pulses to unambiguously detect lactate in skeletal muscle at 7 T. METHODS: Lactate double-quantum coherences were 3D-localized using slice-selective Shinnar-Le Roux optimized excitation and adiabatic refocusing pulses (similar to semi-LASER). DQF MR spectra were acquired at 7 T from lactate phantoms, meat specimens with injected lactate (exploring multiple TEs and fiber orientations), and human gastrocnemius in vivo during and after exercise (without cuff ischemia). RESULTS: Lactate was readily detected, achieving the full potential of 50% signal with a DQF, in solution. The effects of fiber orientation and TE on the lactate doublet (peak splitting, amplitude, and phase) were in good agreement with theory and literature. Exercise-induced lactate accumulation was detected with 30 s time resolution. CONCLUSION: This novel 3D-localized 1 H DQF MRS sequence can dynamically detect glycolytically generated lactate in muscle during exercise and recovery at 7 T.


Assuntos
Ácido Láctico , Músculo Esquelético , Exercício Físico , Humanos , Espectroscopia de Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas
3.
Med Phys ; 48(8): 4387-4394, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018625

RESUMO

PURPOSE: While test objects (phantoms) in magnetic resonance imaging (MRI) are crucial for sequence development, protocol validation, and quality control, studies on the preparation of phantoms have been scarce, particularly at fields exceeding 3 Tesla. Here, we present a framework for the preparation of phantoms with well-defined T1 and T2 times at 3 and 7 Tesla. METHODS: Phantoms with varying concentrations of agarose and Gd-DTPA were prepared and measured at 3 and 7 Tesla using T1 and T2 mapping techniques. An empirical, polynomial model was constructed that best represents the data at both field strengths, enabling the preparation of new phantoms with specified combinations of both T1 and T2 . Instructions for three different tissue types (brain gray matter, brain white matter, and renal cortex) are presented and validated. RESULTS: T1 times in the samples ranged from 698 to 2820 ms and from 695 to 2906 ms, whereas T2 times ranged from 39 to 227 ms and from 34 to 235 ms for 3 and 7 Tesla scans, respectively. Models for both relaxation times used six parameters to represent the data with an adjusted R² of 0.998 and 0.997 for T1 and T2 , respectively. CONCLUSION: Based on the equations derived from the current study, it is now possible to obtain accurate weight specifications for a test object with desired T1 and T2 relaxation times. This will spare researchers the laborious task of trail-and-error approaches in test object preparation attempts.


Assuntos
Gadolínio DTPA , Imageamento por Ressonância Magnética , Técnicas Histológicas , Humanos , Imagens de Fantasmas , Sefarose
4.
IEEE Trans Med Imaging ; 40(4): 1267-1278, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439836

RESUMO

Magnetic resonance has become a backbone of medical imaging but suffers from inherently low sensitivity. This can be alleviated by improved radio frequency (RF) coils. Multi-turn multi-gap coaxial coils (MTMG-CCs) introduced in this work are flexible, form-fitting RF coils extending the concept of the single-turn single-gap CC by introducing multiple cable turns and/or gaps. It is demonstrated that this enables free choice of the coil diameter, and thus, optimizing it for the application to a certain anatomical site, while operating at the self-resonance frequency. An equivalent circuit for MTMG-CCs is modeled to predict their resonance frequency. Possible configurations regarding size, number of turns and gaps, and cable types for different B 0 field strengths are calculated. Standard copper wire loop coils (SCs) and flexible CCs made from commercial coaxial cable were fabricated as receive-only coils for 3 T and transmit/receive coils at 7 T with diameters between 4 and 15 cm. Electromagnetic simulations are used to investigate the currents on MTMG-CCs, and demonstrate comparable specific absorption rate of 7 T CCs and SCs. Signal-to-noise ratio (SNR), transmit efficiency, and active detuning performance of CCs were compared in bench tests and MR experiments. For the form-fitted receive-only CCs at 3 T no significant SNR degradation was found as compared to flat SCs on a balloon phantom. Form-fitted transmit/receive CCs at 7 T showed higher transmit efficiency and SNR. MTMG-CCs can be sized to optimize sensitivity, are flexible and lightweight, and could therefore enable the fabrication of wearable coils with improved patient comfort.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
5.
J Magn Reson ; 296: 47-59, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205313

RESUMO

A flexible transceiver array based on transmission line resonators (TLRs) combining the advantages of coil arrays with the possibility of form-fitting targeting cardiac MRI at 7 T is presented. The design contains 12 elements which are fabricated on a flexible substrate with rigid PCBs attached on the center of each element to place the interface components, i.e. transmit/receive (T/R) switch, power splitter, pre-amplifier and capacitive tuning/matching circuitry. The mutual coupling between elements is cancelled using a decoupling ring-based technique. The performance of the developed array is evaluated by 3D electromagnetic simulations, bench tests, and MR measurements using phantoms. Efficient inter-element decoupling is demonstrated in flat configuration on a box-shaped phantom (Sij < -19 dB), and bent on a human torso phantom (Sij < -16 dB). Acceleration factors up to 3 can be employed in bent configuration with reasonable g-factors (<1.7) in an ROI at the position of the heart. The array enables geometrical conformity to bodies within a large range of size and shape and is compatible with parallel imaging and parallel transmission techniques.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Simulação por Computador , Campos Eletromagnéticos , Coração/diagnóstico por imagem , Humanos , Aumento da Imagem , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Tronco/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa