Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 50(50): 10876-86, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22085312

RESUMO

Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)(n)Z, Z(X)(n)Z (n ≥ 2), or (XZ)(n) (n ≥ 2), where X is a hydrophobic residue and Z is a charged or polar residue. N-Acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed seven peptides, in addition to well-known primary nucleating sequences Ac(275)VQIINK (AcPHF6*) and Ac(306)VQIVYK (AcPHF6), formed fibers, tubes, ribbons, or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac(10)VME, AcPHF6*, Ac(375)KLTFR, and Ac(393)VYK were found to enhance the fraction of ß-structure of AcPHF6 formed at equilibrium, and Ac(375)KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild-type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics.


Assuntos
Oligopeptídeos/química , Fragmentos de Peptídeos/química , Proteínas tau/química , Acetilação , Motivos de Aminoácidos , Substituição de Aminoácidos , Amiloide/química , Dicroísmo Circular , Dimerização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/ultraestrutura , Concentração Osmolar , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/ultraestrutura , Mutação Puntual , Desnaturação Proteica , Estrutura Secundária de Proteína , Termodinâmica , Proteínas tau/genética , Proteínas tau/ultraestrutura
2.
Nanoscale ; 12(10): 5987-5994, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32108848

RESUMO

Advances in nanotechnology require of robust methods to fabricate new types of nanostructured materials whose properties can be controlled at will using simple procedures. Nanoscale composites can benefit from actuation protocols that involve mutual interfacial interactions on the nanoscale. Herein, a method to create nanoscale composite thin films consisting of mesoporous cobalt ferrite (CFO) whose pore walls are nanocoated with HfO2 is presented. Porous CFO films are first prepared by sol-gel. Atomic layer deposition is subsequently used to conformally grow a HfO2 layer at the surface of the pore walls, throughout the thickness of the films. The magnetic properties of uncoated and HfO2-coated CFO mesoporous films are then modulated by applying external voltage, via magneto-ionic effects. The CFO-HfO2 composite films exhibit an enhanced magnetoelectric response. The magnetic moment at saturation of the composite increases 56% upon the application of -50 V (compared to 24% for CFO alone). Furthermore, dissimilar trends in coercivity are observed: after applying -50 V, the coercivity of the composite film increases by 69% while the coercivity of the CFO alone decreases by 25%. The effects can be reversed applying suitable positive voltages. This two-oxide nanocomposite material differs from archetypical magneto-ionic architectures, in which voltage-driven ion migration is induced between fully-metallic and oxide counterparts. The synthesized material is particularly appealing to develop new types of magnetoelectric devices with a highly tunable magnetic response.

3.
Sci Rep ; 9(1): 10804, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346196

RESUMO

The magnetic properties of mesoporous cobalt ferrite films can be largely tuned by the application of an electric field using a liquid dielectric electrolyte. By applying a negative voltage, the cobalt ferrite becomes reduced, leading to an increase in saturation magnetization of 15% (MS) and reduction in coercivity (HC) between 5-28%, depending on the voltage applied (-10 V to -50 V). These changes are mainly non-volatile so after removal of -10 V MS remains 12% higher (and HC 5% smaller) than the pristine sample. All changes can then be reversed with a positive voltage to recover the initial properties even after the application of -50 V. Similar studies were done on analogous films without induced porosity and the effects were much smaller, underscoring the importance of nanoporosity in our system. The different mechanisms possibly responsible for the observed effects are discussed and we conclude that our observations are compatible with voltage-driven oxygen migration (i.e., the magneto-ionic effect).

4.
ACS Appl Mater Interfaces ; 11(40): 37338-37346, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525887

RESUMO

Voltage control of the magnetic properties of oxide thin films is highly appealing to enhance energy efficiency in miniaturized spintronic and magnetoelectric devices. Herein, magnetoelectric effects in electrolyte-gated nanoporous iron oxide films are investigated. Highly porous films were prepared by the evaporation-induced self-assembly of sol-gel precursors with a sacrificial block-copolymer template. For comparison, films with less porosity but analogous crystallographic structure were also prepared using an identical procedure except without the polymer template. The films were found to be 70-85 nm in thickness as measured by scanning electron microscopy and primarily hematite as determined by Raman spectroscopy. The templated (highly porous) films showed a very large magnetoelectric response with a maximum increase in magnetic moment at saturation of a factor of 13 and a noticeable (2-fold) increase of coercivity (after applying -50 V). The nontemplated films also exhibited a pronounced increase of magnetic moment at saturation of a factor of 4, although the coercivity remained unaffected over the same voltage range. Magnetoelectric effects in these latter films were found to be fully reversible in the voltage window ±10 V. The observed changes in magnetic properties are concluded to be magneto-ionically driven with oxygen ion exchange between the iron oxide and the liquid electrolyte, as evidenced from Raman and X-ray photoelectron spectroscopy experiments.

5.
Nanoscale ; 10(30): 14570-14578, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30027980

RESUMO

Large magnetoelectric effects are observed in as-sputtered (nanoparticulate-like) and electrochemically dealloyed (nanoporous) 200 nm thick Fe-Cu films. Application of positive voltages decreases both the saturation magnetization (MS) and coercivity (HC) of the films, while negative voltages cause the reverse effect (increase of MS and HC). The relative variations are as high as 20% for MS and beyond 100% for HC, both for the as-sputtered and dealloyed states. These changes in magnetic properties are caused by controlled and reversible electric-field-driven nanoscale phase transformations between face-centered cubic (fcc) and body-centered cubic (bcc) structures. These phase transitions are in turn due to selective redox reactions induced by the applied voltage, which can be regarded as a "magnetoionic effect." The controlled tuning of HC and MS with the moderate values of applied voltage, together with the sustainable composition of the investigated alloys (not containing noble metals, as opposed to many previous works on magnetoelectric effects in thin films), pave the way towards the implementation of magnetic and spintronic devices with enhanced energy efficiency and functionalities.

6.
Adv Sci (Weinh) ; 5(8): 1800499, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128259

RESUMO

Fe-Cu films with pseudo-ordered, hierarchical porosity are prepared by a simple, two-step procedure that combines colloidal templating (using sub-micrometer-sized polystyrene spheres) with electrodeposition. The porosity degree of these films, estimated by ellipsometry measurements, is as high as 65%. The resulting magnetic properties can be controlled at room temperature using an applied electric field generated through an electric double layer in an anhydrous electrolyte. This material shows a remarkable 25% voltage-driven coercivity reduction upon application of negative voltages, with excellent reversibility when a positive voltage is applied, and a short recovery time. The pronounced reduction of coercivity is mainly ascribed to electrostatic charge accumulation at the surface of the porous alloy, which occurs over a large fraction of the electrodeposited material due to its high surface-area-to-volume ratio. The emergence of a hierarchical porosity is found to be crucial because it promotes the infiltration of the electrolyte into the structure of the film. The observed effects make this material a promising candidate to boost energy efficiency in magnetoelectrically actuated devices.

7.
ACS Appl Mater Interfaces ; 9(22): 19063-19073, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28485570

RESUMO

This work aims to improve the poor cycle lifetime of silicon-based anodes for Li-ion batteries by tuning microstructural parameters such as pore size, pore volume, and specific surface area in chemically synthesized mesoporous silicon. Here we have specifically produced two different mesoporous silicon samples from the magnesiothermic reduction of ordered mesoporous silica in either argon or forming gas. In situ X-ray diffraction studies indicate that samples made in Ar proceed through a Mg2Si intermediate, and this results in samples with larger pores (diameter ≈ 90 nm), modest total porosity (34%), and modest specific surface area (50 m2 g-1). Reduction in forming gas, by contrast, results in direct conversion of silica to silicon, and this produces samples with smaller pores (diameter ≈ 40 nm), higher porosity (41%), and a larger specific surface area (70 m2 g-1). The material with smaller pores outperforms the one with larger pores, delivering a capacity of 1121 mAh g-1 at 10 A g-1 and retains 1292 mAh g-1 at 5 A g-1 after 500 cycles. For comparison, the sample with larger pores delivers a capacity of 731 mAh g-1 at 10 A g-1 and retains 845 mAh g-1 at 5 A g-1 after 500 cycles. The dependence of capacity retention and charge storage kinetics on the nanoscale architecture clearly suggests that these microstructural parameters significantly impact the performance of mesoporous alloy type anodes. Our work is therefore expected to contribute to the design and synthesis of optimal mesoporous architectures for advanced Li-ion battery anodes.

8.
Energy Environ Sci ; 9(2): 540-549, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30976318

RESUMO

A major challenge in the field of water electrolysis is the scarcity of oxygen-evolving catalysts that are inexpensive, highly corrosion-resistant, suitable for large-scale applications and able to oxidize water at high current densities and low overpotentials. Most unsupported, non-precious metals oxygen-evolution catalysts require at least ~350 mV overpotential to oxidize water with a current density of 10 mA/cm2 in 1 M alkaline solution. Here we report on a robust nanostructured porous NiFe-based oxygen evolution catalyst made by selective alloy corrosion. In 1 M KOH, our material exhibits a catalytic activity towards water oxidation of 500 mA/cm2 at 360 mV overpotential and is stable for over eleven days. This exceptional performance is attributed to three factors. First, the small size of the ligaments and pores in our mesoporous catalyst (~10 nm) results in a high BET surface area (43 m2/g) and therefore a high density of oxygen-evolution catalytic sites per unit mass. Second, the open porosity facilitates effective mass transfer at the catalyst/electrolyte interface. Third and finally, the high bulk electrical conductivity of the mesoporous catalyst allows for effective current flow through the electrocatalyst, making it possible to use thick films with a high density of active sites and ~3×104 cm2 of catalytic area per cm2 of electrode area. Our mesoporous catalyst is thus attractive for alkaline electrolyzers where water-based solutions are decomposed into hydrogen and oxygen as the only products, driven either conventionally or by photovoltaics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa