Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 129(7): 1329-39, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26906418

RESUMO

Entry into mitosis is induced by the activation of cyclin-B-Cdk1 and Greatwall (Gwl; also known as MASTL in mammals) kinases. Cyclin-B-Cdk1 phosphorylates mitotic substrates, whereas Gwl activation promotes the phosphorylation of the small proteins Arpp19 and ENSA. Phosphorylated Arpp19 and/or ENSA bind to and inhibit PP2A comprising the B55 subunit (PP2A-B55; B55 is also known as PPP2R2A), the phosphatase responsible for cyclin-B-Cdk1 substrate dephosphorylation, allowing the stable phosphorylation of mitotic proteins. Upon mitotic exit, cyclin-B-Cdk1 and Gwl kinases are inactivated, and mitotic substrates are dephosphorylated. Here, we have identified protein phosphatase-1 (PP1) as the phosphatase involved in the dephosphorylation of the activating site (Ser875) of Gwl. Depletion of PP1 from meioticXenopusegg extracts maintains phosphorylation of Ser875, as well as the full activity of this kinase, resulting in a block of meiotic and mitotic exit. By contrast, preventing the reactivation of PP2A-B55 through the addition of a hyperactive Gwl mutant (GwlK72M) mainly affected Gwl dephosphorylation on Thr194, resulting in partial inactivation of Gwl and in the incomplete exit from mitosis or meiosis. We also show that when PP2A-B55 is fully reactivated by depleting Arpp19, this protein phosphatase is able to dephosphorylate both activating sites, even in the absence of PP1.


Assuntos
Meiose/fisiologia , Mitose/fisiologia , Fosfoproteínas/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Ativação Enzimática , Feminino , Masculino , Óvulo/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Xenopus , Proteínas de Xenopus/genética
2.
Nat Commun ; 12(1): 3565, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117214

RESUMO

Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates. The molecular determinants conferring slow dephosphorylation kinetics to S67 are unknown. PKA also phosphorylates Arpp19. This phosphorylation performed on S109 is essential to maintain prophase I-arrest in Xenopus oocytes although the underlying signalling mechanism is elusive. Here, we characterize the molecular determinants conferring high affinity and slow dephosphorylation to S67 and controlling PP2A-B55 inhibitory activity of Arpp19. Moreover, we show that phospho-S109 restricts S67 phosphorylation by increasing its catalysis by PP2A-B55. Finally, we discover a double feed-back loop between these two phospho-sites essential to coordinate the temporal pattern of Arpp19-dependent PP2A-B55 inhibition and Cyclin B/Cdk1 activation during cell division.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Hidrolases de Éster Carboxílico/genética , Divisão Celular/fisiologia , Ciclina B/metabolismo , Retroalimentação , Feminino , Meiose , Mitose , Fosfoproteínas Fosfatases/genética , Fosfoproteínas/genética , Fosforilação , Proteína Fosfatase 2/genética , Xenopus , Proteínas de Xenopus , Xenopus laevis/metabolismo
3.
Int J Dev Biol ; 60(7-8-9): 245-254, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27759153

RESUMO

Entry into mitosis requires the coordinated activation of various protein kinases and phosphatases that together activate sequential signaling pathways allowing entry, progression and exit of mitosis. The limiting step is thought to be the activation of the mitotic Cdk1-cyclin B kinase. However, this model has recently evolved with new data showing that in addition to the Cdk1-cyclin B complex, Greatwall (Gwl) kinase is also required to enter into and maintain mitosis. This new concept proposes that entry into mitosis is now based on the combined activation of both kinases Cdk1-cyclin B and Gwl, the former promoting massive phosphorylation of mitotic substrates and the latter inhibiting PP2A-B55 phosphatase responsible for dephosphorylation of these substrates. Activated Gwl phosphorylates both Arpp19 and ENSA, which associate and inhibit PP2A-B55. This pathway seems relatively well conserved from yeast to humans, although some differences appear based on models or techniques used. While Gwl is activated by phosphorylation, its inactivation requires dephosphorylation of critical residues. Several phosphatases such as PP1, PP2A-B55 and FCP1 are required to control the dephosphorylation and inactivation of Gwl and a properly regulated mitotic exit. Gwl has also been reported to be involved in cancer processes and DNA damage recovery. These new findings support the idea that the Gwl-Arpp19/ENSA-PP2A-B55 pathway is essential to achieve an efficient division of cells and to maintain genomic stability.


Assuntos
Meiose/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Fosforilação , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa