Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Chem Inf Model ; 62(24): 6602-6613, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343689

RESUMO

Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-µs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.


Assuntos
Bicamadas Lipídicas , Fosfolipases Tipo C , Entropia , Fosfolipases Tipo C/metabolismo , Termodinâmica , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ligação Proteica
2.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234717

RESUMO

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation-Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation-Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an 'open' active site conformation.


Assuntos
Fosfolipases Tipo C , Tirosina , Cátions , Colina , Lecitinas , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Fosfolipases Tipo C/metabolismo , Fatores de Virulência
3.
Biochemistry ; 59(25): 2359-2370, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32479091

RESUMO

The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling 31P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP+ undergoes a partial hydride transfer reaction, while E·GMP·NADP+ undergoes a partial deamination reaction. A different cofactor conformation is required for each partial reaction. Here we report the effects of mutations designed to perturb cofactor conformation and ammonia binding with the goal of identifying the structural features that contribute to the distinct dynamic signatures of the hydride transfer and deamination complexes. These experiments suggest that Asp129 is a central cog in a dynamic network required for both hydride transfer and deamination. In contrast, Lys77 modulates the conformation and mobility of substrates and cofactors in a reaction-specific manner. Thr105 and Tyr318 are part of a deamination-specific dynamic network that includes the 2'-OH of GMP. These residues have comparatively little effect on the dynamic properties of the hydride transfer complex. These results further illustrate the potential of high-resolution field cycling NMR relaxometry for the investigation of ligand dynamics. In addition, exchange experiments indicate that NH3/NH4+ has a high affinity for the deamination complex but a low affinity for the hydride transfer complex, suggesting that the movement of ammonia may gate the cofactor conformational change. Collectively, these experiments reinforce the view that the enzyme, substrates, and cofactor are linked in intricate, reaction-specific, dynamic networks and demonstrate that distal portions of the substrates and cofactors are critical features in these networks.


Assuntos
Coenzimas , GMP Redutase , NADP , Humanos , Amônia/metabolismo , Biocatálise , Coenzimas/química , Coenzimas/metabolismo , GMP Redutase/genética , GMP Redutase/metabolismo , Guanosina Monofosfato/química , Cinética , Conformação Molecular , Mutação , NADP/química , NADP/metabolismo , Ligação Proteica
4.
Chem Rev ; 118(18): 8435-8473, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30148347

RESUMO

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes from Gram-positive bacteria are secreted virulence factors that aid in downregulating host immunity. These PI-PLCs are minimalist peripheral membrane enzymes with a distorted (ßα)8 TIM barrel fold offering a conserved and stable scaffold for the conserved catalytic amino acids while membrane recognition is achieved mostly through variable loops. Decades of experimental and computational research on these enzymes have revealed the subtle interplay between molecular mechanisms of catalysis and membrane binding, leading to a semiquantitative model for how they find, bind, and cleave their respective substrates on host cell membranes. Variations in sequence and structure of their membrane binding sites may correlate with how enzymes from different Gram-positive bacteria search for their particular targets on the membrane. Detailed molecular characterization of protein-lipid interactions have been aided by cutting-edge methods ranging from 31P field-cycling NMR relaxometry to monitor protein-induced changes in phospholipid dynamics to molecular dynamics simulations to elucidate the roles of electrostatic and cation-π interactions in lipid binding to single molecule fluorescence measurements of dynamic interactions between PI-PLCs and vesicles. This toolkit is readily applicable to other peripheral membrane proteins including orthologues in Gram-negative bacteria and more recently discovered eukaryotic minimalist PI-PLCs.


Assuntos
Bactérias/enzimologia , Fosfatidilinositol Diacilglicerol-Liase/química , Fosfatidilinositol Diacilglicerol-Liase/metabolismo , Fosfatidilinositóis/metabolismo , Regulação Alostérica/fisiologia , Biocatálise , Domínio Catalítico , Membrana Celular/metabolismo , Cinética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
5.
Biochemistry ; 57(22): 3146-3154, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29547266

RESUMO

The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling 31P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the 31P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP+, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP+. The presence of D2O perturbed the relaxation of the 31P nuclei in E·IMP·NADP+ but not in E·GMP·NADP+, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of Vmax by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.


Assuntos
GMP Redutase/química , GMP Redutase/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Sítios de Ligação , Catálise , Guanosina/metabolismo , Cinética , Imageamento por Ressonância Magnética , Modelos Moleculares , NADP/metabolismo , Ligação Proteica
6.
J Biol Chem ; 291(44): 22988-22998, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27613871

RESUMO

Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring 31P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP+ complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP+ and E·GMP·NADP+ complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP+ complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.


Assuntos
Coenzimas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , GMP Redutase/química , Biocatálise , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GMP Redutase/genética , GMP Redutase/metabolismo , Nucleotídeos de Guanina/química , Nucleotídeos de Guanina/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , NADP/química , NADP/metabolismo , Ligação Proteica
7.
Biochim Biophys Acta ; 1864(6): 697-705, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26976751

RESUMO

The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes.


Assuntos
Ácidos/metabolismo , Listeria monocytogenes/enzimologia , Fosfolipases Tipo C/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo
8.
Biochim Biophys Acta ; 1861(11): 1808-1815, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600289

RESUMO

Phosphatidylinositol analogs (PIAs) were originally designed to bind competitively to the Akt PH domain and prevent membrane translocation and activation. d-3-Deoxy-dioctanoylphosphatidylinositol (d-3-deoxy-diC8PI), but not compounds with altered inositol stereochemistry (e.g., l-3-deoxy-diC8PI and l-3,5-dideoxy-diC8PI), is cytotoxic. However, high resolution NMR field cycling relaxometry shows that both cytotoxic and non-toxic PIAs bind to the Akt1 PH domain at the site occupied by the cytotoxic alkylphospholipid perifosine. This suggests that another mechanism for cytotoxicity must account for the difference in efficacy of the synthetic short-chain PIAs. In MCF-7 breast cancer cells, with little constitutively active Akt, d-3-deoxy-diC8PI (but not l-compounds) decreases viability concomitant with increased cleavage of PARP and caspase 9, indicative of apoptosis. d-3-Deoxy-diC8PI also induces a decrease in endogenous levels of cyclins D1 and D3 and blocks downstream retinoblastoma protein phosphorylation. siRNA-mediated depletion of cyclin D1, but not cyclin D3, reduces MCF-7 cell proliferation. Thus, growth arrest and cytotoxicity induced by the soluble d-3-deoxy-diC8PI occur by a mechanism that involves downregulation of the D-type cyclin-pRb pathway independent of its interaction with Akt. This ability to downregulate D-type cyclins contributes, at least in part, to the anti-proliferative activity of d-3-deoxy-diC8PI and may be a common feature of other cytotoxic phospholipids.


Assuntos
Neoplasias da Mama/patologia , Ciclina D1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ácidos Fosfatídicos/farmacologia , Fosfatidilinositóis/farmacologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Ácidos Fosfatídicos/química , Fosfatidilinositóis/química , Fosforilação/efeitos dos fármacos , Domínios de Homologia à Plecstrina , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Biophys J ; 110(6): 1367-78, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028646

RESUMO

Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Eletricidade Estática , Aminoácidos/química , Bacillus thuringiensis/metabolismo , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Lipídeos/química , Simulação de Dinâmica Molecular , Fosfatidilgliceróis/química , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
10.
J Biol Chem ; 290(3): 1592-606, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25429968

RESUMO

The lipid phosphatase activity of the tumor suppressor phosphatase and tensin homolog (PTEN) is enhanced by the presence of its biological product, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This enhancement is suggested to occur via the product binding to the N-terminal region of the protein. PTEN effects on short-chain phosphoinositide (31)P linewidths and on the full field dependence of the spin-lattice relaxation rate (measured by high resolution field cycling (31)P NMR using spin-labeled protein) are combined with enzyme kinetics with the same short-chain phospholipids to characterize where PI(4,5)P2 binds on the protein. The results are used to model a discrete site for a PI(4,5)P2 molecule close to, but distinct from, the active site of PTEN. This PI(4,5)P2 site uses Arg-47 and Lys-13 as phosphate ligands, explaining why PTEN R47G and K13E can no longer be activated by that phosphoinositide. Placing a PI(4,5)P2 near the substrate site allows for proper orientation of the enzyme on interfaces and should facilitate processive catalysis.


Assuntos
PTEN Fosfo-Hidrolase/química , Fosfatidilinositol 4,5-Difosfato/química , Sítio Alostérico , Domínio Catalítico , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Micelas , Mutação , Fosfatidilinositóis/química , Fosfolipídeos/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química
11.
J Biol Chem ; 290(31): 19334-42, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26092728

RESUMO

Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins.


Assuntos
Proteínas de Bactérias/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Fosfoinositídeo Fosfolipase C/química , Tirosina/análogos & derivados , Sequência de Aminoácidos , Cátions , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Lipídeos de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Staphylococcus aureus/enzimologia , Tirosina/química
12.
Infect Immun ; 83(5): 2175-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25776746

RESUMO

Listeria monocytogenes is a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, including the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% ± 7%) at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% ± 6%). While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% ± 5%). Coexpression of LLO and PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of autophagy by L. monocytogenes primarily involves PlcA and ActA and that either one of these factors must be present for L. monocytogenes growth in macrophages.


Assuntos
Autofagia/imunologia , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Deleção de Genes , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Fosfolipases Tipo C/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
J Am Chem Soc ; 137(1): 14-7, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25517221

RESUMO

Bacillus thuringiensis secretes the virulence factor phosphatidylinositol-specific phospholipase C (BtPI-PLC), which specifically binds to phosphatidylcholine (PC) and cleaves GPI-anchored proteins off eukaryotic plasma membranes. To elucidate how BtPI-PLC searches for GPI-anchored proteins on the membrane surface, we measured residence times of single fluorescently labeled proteins on PC-rich small unilamellar vesicles (SUVs). BtPI-PLC interactions with the SUV surface are transient with a lifetime of 379 ± 49 ms. These data also suggest that BtPI-PLC does not directly sense curvature, but rather prefers to bind to the numerous lipid packing defects in SUVs. Despite this preference for defects, all-atom molecular dynamics simulations of BtPI-PLC interacting with PC-rich bilayers show that the protein is shallowly anchored with the deepest insertions ∼18 Å above the bilayer center. Membrane partitioning is mediated, on average, by 41 hydrophobic, 8 hydrogen-bonding, and 2 cation-π (between PC choline headgroups and Tyr residues) transient interactions with phospholipids. These results lead to a quantitative model for BtPI-PLC interactions with cell membranes where protein binding is mediated by lipid packing defects, possibly near GPI-anchored proteins, and the protein diffuses on the membrane for ∼100-380 ms, during which time it may cleave ∼10 GPI-anchored proteins before dissociating. This combination of short two-dimensional scoots followed by three-dimensional hops may be an efficient search strategy on two-dimensional surfaces with obstacles.


Assuntos
Bacillus thuringiensis/enzimologia , Fosfatidilcolinas/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo
14.
Biochemistry ; 53(3): 462-72, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24383815

RESUMO

The mechanism of binding of two promising anticancer agents (the cytotoxic alkylphospholipids perifosine and miltefosine) to the Akt PH domain is investigated by high-resolution field-cycling (31)P nuclear magnetic resonance (NMR) spectroscopy using a spin-labeled recombinant PH domain. These results strongly indicate that there are two discrete amphiphile binding sites on the domain: (i) the cationic site that binds phosphoinositides and some alkylphospholipids and (ii) a second site that is occupied by only the alkylphospholipids. The identification of this second site for amphiphiles on the Akt1 PH domain provides a new target for drug development as well as insights into the regulation of the activity of the intact Akt1 protein. The field-cycling NMR methodology could be used to define discrete phospholipid or amphiphile binding sites on a wide variety of peripheral membrane proteins.


Assuntos
Fosfatidilinositóis/metabolismo , Fosforilcolina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/metabolismo , Sítios de Ligação , Humanos , Micelas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química , Marcadores de Spin
15.
J Biol Chem ; 288(52): 37277-88, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24235144

RESUMO

Recombinant EF-hand domain of phospholipase C δ1 has a moderate affinity for anionic phospholipids in the absence of Ca(2+) that is driven by interactions of cationic and hydrophobic residues in the first EF-hand sequence. This region of PLC δ1 is missing in the crystal structure. The relative orientation of recombinant EF with respect to the bilayer, established with NMR methods, shows that the N-terminal helix of EF-1 is close to the membrane interface. Specific mutations of EF-1 residues in full-length PLC δ1 reduce enzyme activity but not because of disturbing partitioning of the protein onto vesicles. The reduction in enzymatic activity coupled with vesicle binding studies are consistent with a role for this domain in aiding substrate binding in the active site once the protein is transiently anchored at its target membrane.


Assuntos
Bicamadas Lipídicas/química , Fosfolipase C delta/química , Fosfolipídeos/química , Animais , Cálcio/química , Cálcio/metabolismo , Domínio Catalítico , Bicamadas Lipídicas/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
J Biol Chem ; 288(21): 14863-73, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23576432

RESUMO

Peripheral membrane proteins can be targeted to specific organelles or the plasma membrane by differential recognition of phospholipid headgroups. Although molecular determinants of specificity for several headgroups, including phosphatidylserine and phosphoinositides are well defined, specific recognition of the headgroup of the zwitterionic phosphatidylcholine (PC) is less well understood. In cytosolic proteins the cation-π box provides a suitable receptor for choline recognition and binding through the trimethylammonium moiety. In PC, this moiety might provide a sufficient handle to bind to peripheral proteins via a cation-π cage, where the π systems of two or more aromatic residues are within 4-5 Å of the quaternary amine. We prove this hypothesis by engineering the cation-π box into secreted phosphatidylinositol-specific phospholipase C from Staphylococcus aureus, which lacks specific PC recognition. The N254Y/H258Y variant selectively binds PC-enriched vesicles, and x-ray crystallography reveals N254Y/H258Y binds choline and dibutyroylphosphatidylcholine within the cation-π motif. Such simple PC recognition motifs could be engineered into a wide variety of secondary structures providing a generally applicable method for specific recognition of PC.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/química , Fosfatidilcolinas/química , Receptores de Superfície Celular/química , Staphylococcus aureus/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions/química , Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Mutação de Sentido Incorreto , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
17.
Epilepsy Behav ; 39: 48-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25200525

RESUMO

Dietary therapy has been used to treat many individuals with epilepsy whose seizures are refractory to antiepileptic drugs. The mechanisms for how dietary therapy confers seizure protection are currently not well understood. We evaluated the acute effects of glucose and ß-hydroxybutyrate (the major circulating ketone body) in conferring seizure protection to the EL mouse, a model of multifactorial idiopathic generalized epilepsy. EL mice were fed either an unrestricted standard diet or a calorie-restricted standard diet to achieve a body weight reduction of 20-23%. D-Glucose, 2-deoxy-D-glucose, and ß-hydroxybutyrate were supplemented in the drinking water of calorie-restricted mice for 2.5 h prior to seizure testing to simulate the effect of increased glucose availability, decreased glucose utilization, and increased ketone availability, respectively. Seizure susceptibility, body weight, plasma glucose, and ß-hydroxybutyrate were measured over a nine-week treatment period. Additionally, excitatory and inhibitory amino acids were measured in the brains of mice using (1)H NMR. Glutamate decarboxylase activity was also measured to evaluate the connection between dietary therapy and brain metabolism. We found that lowering of glucose utilization is necessary to confer seizure protection with long-term (>4 weeks) calorie restriction, whereas increased ketone availability did not affect seizure susceptibility. In the absence of long-term calorie restriction, however, reduced glucose utilization and increased ketone availability did not affect seizure susceptibility. Brain excitatory and inhibitory amino acid content did not change with treatment, and glutamate decarboxylase activity was not associated with seizure susceptibility. We demonstrated that reduced glucose utilization is necessary to confer seizure protection under long-term calorie restriction in EL mice, while acute ketone supplementation did not confer seizure protection. Further studies are needed to uncover the mechanisms by which glucose utilization influences seizure susceptibility.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Encéfalo/metabolismo , Restrição Calórica , Dieta Cetogênica , Epilepsia/dietoterapia , Glucose/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Convulsões/dietoterapia , Convulsões/prevenção & controle
18.
Biophys J ; 104(1): 185-95, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23332071

RESUMO

The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro(245) and Pro(254), are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro(245) disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro(245) variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro(254) appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding.


Assuntos
Bacillus thuringiensis/citologia , Bacillus thuringiensis/enzimologia , Membrana Celular/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Sequência de Aminoácidos , Bacillus cereus/enzimologia , Biocatálise , Sequência Conservada , Micelas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Movimento (Física) , Proteínas Mutantes/metabolismo , Fosfoinositídeo Fosfolipase C/química , Diester Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Prolina/química , Ligação Proteica , Estrutura Secundária de Proteína , Lipossomas Unilamelares/química
19.
J Biol Chem ; 287(48): 40317-27, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23038258

RESUMO

BACKGROUND: Bacterial phosphatidylinositol-specific phospholipase C targets PI and glycosylphosphatidylinositol-linked proteins of eukaryotic cells. RESULTS: Functional relevance of a homodimeric S. aureus PI-PLC crystal structure is supported by enzyme kinetics and mutagenesis. Nonsubstrate phosphatidylcholine increases activity by facilitating enzyme dimerization. CONCLUSION: Activating transient dimerization is antagonized by anions binding to a discrete site. SIGNIFICANCE: Interplay of protein oligomerization and anion binding controls enzyme activity. Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane.


Assuntos
Ânions/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação , Dimerização , Cinética , Fosfoinositídeo Fosfolipase C/genética , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Especificidade por Substrato
20.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1808-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999304

RESUMO

The unique steps in the synthesis of an unusual osmolyte in hyperthermophiles, di-myo-inositol-1,1'-phosphate (DIP), involve the production of CDP-inositol and its condensation with an inositol-1-phosphate molecule to form phosphorylated DIP. While many organisms fuse both activities into a single enzyme, the two are separate in Thermotoga maritima. The crystal structure of the T. maritima inositol-1-phosphate cytidylyltransferase, which as a soluble protein may transiently associate with its membrane-embedded partner phospho-DIP synthase (P-DIPS), has now been obtained. The structure shows a conserved motif of sugar nucleotide transferases (COG1213) with a structurally reinforced C-terminal Cys bonded to the core of the protein. A bound arsenosugar identifies the location of the active site for inositol 1-phosphate. Based on homologous structures from several species and the identification of the crucial conserved aspartate residue, a catalytic mechanism for this enzyme is proposed as well as a mode for its association with P-DIPS. This structure imposes constraints on the mode of association, communication and temperature activation of two separate enzymes in T. maritima. For the first time, a working model for the membrane-bound P-DIPS unit has been constructed. This sheds light on the functioning of the phosphatidylserine and phosphatidylinositol synthases involved in many physiological processes that are homologous to P-DIPS. This work provides fresh insights into the synthesis of the unusual thermoprotective compound DIP in hyperthermophiles.


Assuntos
Fosfatos de Inositol/química , Nucleotidiltransferases/química , Colina-Fosfato Citidililtransferase/química , Cristalografia por Raios X , Thermotoga maritima/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa