Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7995): 494-499, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233619

RESUMO

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

2.
ACS Nanosci Au ; 4(2): 115-127, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38644964

RESUMO

Two-dimensional (2D) materials are popular for fundamental physics study and technological applications in next-generation electronics, spintronics, and optoelectronic devices due to a wide range of intriguing physical and chemical properties. Recently, the family of 2D metals and 2D semiconductors has been expanding rapidly because they offer properties once unknown to us. One of the challenges to fully access their properties is poor stability in ambient conditions. In the first half of this Review, we briefly summarize common methods of preparing 2D metals and highlight some recent approaches for making air-stable 2D metals. Additionally, we introduce the physicochemical properties of some air-stable 2D metals recently explored. The second half discusses the air stability and oxidation mechanisms of 2D transition metal dichalcogenides and some elemental 2D semiconductors. Their air stability can be enhanced by optimizing growth temperature, substrates, and precursors during 2D material growth to improve material quality, which will be discussed. Other methods, including doping, postgrowth annealing, and encapsulation of insulators that can suppress defects and isolate the encapsulated samples from the ambient environment, will be reviewed.

3.
J Phys Chem Lett ; 15(31): 7850-7856, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39052863

RESUMO

Many applications of transition metal dichalcogenides (TMDs) involve transfer to functional substrates that can strongly impact their optical and electronic properties. We investigate the impact that substrate interactions have on free carrier densities and defect-related excitonic (XD) emission from MoS2 monolayers grown by metal-organic chemical vapor deposition. C-plane sapphire substrates mimic common hydroxyl-terminated substrates. We demonstrate that transferring MoS2 monolayers to pristine c-plane sapphire dramatically increases the free electron density within MoS2 layers, quenches XD emission, and accelerates exciton recombination at the optical band edge. In contrast, transferring MoS2 monolayers onto inert hexagonal boron nitride (h-BN) has no measurable influence on these properties. Our findings demonstrate the promise of utilizing substrate engineering to control charge doping interactions and to quench broad XD background emission features that can influence the purity of single photon emitters in TMDs being developed for quantum photonic applications.

4.
ACS Appl Mater Interfaces ; 16(2): 2902-2911, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166373

RESUMO

Monolayer transition metal dichalcogenides have strong intracovalent bonding. When stacked in multilayers, however, weak van der Waals interactions dominate interlayer mechanical coupling and, thus, influence their lattice vibrations. This study presents the frequency evolution of interlayer phonons in twisted WS2 bilayers, highly subject to the twist angle. The twist angle between the layers is controlled to modulate the spacing between the layers, which, in turn, affects the interlayer coupling that is probed by Raman spectroscopy. The shifts of high-frequency E2g1 (Γ) and A1g (Γ) phonon modes and their frequency separations are dependent on the twist angle, reflecting the correlation between the interlayer mechanical coupling and twist angle. In this work, we fabricated large-area, twisted bilayer WS2 with a clean interface with controlled twist angles. Polarized Raman spectroscopy identified new interlayer modes, which were not previously reported, depending on the twist angle. The appearance of breathing modes in Raman phonon spectra provides evidence of strong interlayer coupling in bilayer structures. We confirm that the twist angle can alter the exciton and trion dynamics of bilayers as indicated by the photoluminescence peak shift. These large-area controlled twist angle samples have practical applications in optoelectronic device fabrication and twistronics.

5.
ACS Appl Mater Interfaces ; 16(5): 6644-6652, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264996

RESUMO

Synthesis of large-area transition-metal dichalcogenides (TMDs) with controlled orientation is a significant challenge to their industrial applications. Substrate plays a vital role in determining the final quality of monolayer materials grown via the chemical vapor deposition process by controlling their orientation, crystal structure, and grain boundary. This study determined the binding energy and equilibrium distance for tungsten diselenide (WSe2) monolayers on crystalline and amorphous silicon dioxide and aluminum dioxide substrates. Differently oriented WSe2 monolayers are considered to investigate the role of the substrate in the orientation, binding strength, and equilibrium distance. This study can pave the way to synthesizing high-quality two-dimensional (2D) materials for electronic and chemical applications.

6.
ACS Nano ; 18(12): 8876-8884, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38497598

RESUMO

Graphene-enhanced Raman scattering (GERS) offers great opportunities to achieve optical sensing with a high uniformity and superior molecular selectivity. The GERS mechanism relies on charge transfer between molecules and graphene, which is difficult to manipulate by varying the band alignment between graphene and the molecules. In this work, we synthesized a few atomic layers of metal termed two-dimensional (2D) metal to precisely and deterministically modify the graphene Fermi level. Using copper phthalocyanine (CuPc) as a representative molecule, we demonstrated that tuning the Fermi level can significantly improve the signal enhancement and molecular selectivity of GERS. Specifically, aligning the Fermi level of graphene closer to the highest occupied molecular orbital (HOMO) of CuPc results in a more pronounced Raman enhancement. Density functional theory (DFT) calculations of the charge density distribution reproduce the enhanced charge transfer between CuPc molecules and graphene with a modulated Fermi level. Extending our investigation to other molecules such as rhodamine 6G, rhodamine B, crystal violet, and F16CuPc, we showed that 2D metals enabled Fermi level tuning, thus improving GERS detection for molecules and contributing to an enhanced molecular selectivity. This underscores the potential of utilizing 2D metals for the precise control and optimization of GERS applications, which will benefit the development of highly sensitive, specific, and reliable sensors.

7.
Nat Commun ; 15(1): 4016, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740890

RESUMO

Two-dimensional (2D) materials have garnered significant attention in recent years due to their atomically thin structure and unique electronic and optoelectronic properties. To harness their full potential for applications in next-generation electronics and photonics, precise control over the dielectric environment surrounding the 2D material is critical. The lack of nucleation sites on 2D surfaces to form thin, uniform dielectric layers often leads to interfacial defects that degrade the device performance, posing a major roadblock in the realization of 2D-based devices. Here, we demonstrate a wafer-scale, low-temperature process (<250 °C) using atomic layer deposition (ALD) for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. ALD deposition temperatures between 125 and 250 °C result in stoichiometric films with high oxidative stability, yielding a dielectric strength of 8.2 MV/cm. Utilizing a seed-free ALD approach, we form uniform aBN dielectric layers on 2D surfaces and fabricate multiple quantum well structures of aBN/MoS2 and aBN-encapsulated double-gated monolayer (ML) MoS2 field-effect transistors to evaluate the impact of aBN dielectric environment on MoS2 optoelectronic and electronic properties. Our work in scalable aBN dielectric integration paves a way towards realizing the theoretical performance of 2D materials for next-generation electronics.

8.
Nat Commun ; 15(1): 2738, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548739

RESUMO

The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2 by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac S - 1 as well as Re Mo 0 and Re Mo - 1 exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

9.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670956

RESUMO

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

10.
ACS Nano ; 18(33): 21985-21997, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39102316

RESUMO

A scalable platform to synthesize ultrathin heavy metals may enable high-efficiency charge-to-spin conversion for next-generation spintronics. Here, we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal that CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls. The system's air stability enables ex situ spin torque ferromagnetic resonance (ST-FMR) measurements that demonstrate charge-to-spin conversion in graphene/Pb/ferromagnet heterostructures with a 1.5× increase in the effective field ratio compared to control samples.

11.
NPJ 2D Mater Appl ; 7(1): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665486

RESUMO

The development of high-precision large-area optical coatings and devices comprising low-dimensional materials hinges on scalable solution-based manufacturability with control over exfoliation procedure-dependent effects. As such, it is critical to understand the influence of technique-induced transition metal dichalcogenide (TMDC) optical properties that impact the design, performance, and integration of advanced optical coatings and devices. Here, we examine the optical properties of semiconducting MoS2 films from the exfoliation formulations of four prominent approaches: solvent-mediated exfoliation, chemical exfoliation with phase reconversion, redox exfoliation, and native redox exfoliation. The resulting MoS2 films exhibit distinct refractive indices (n), extinction coefficients (k), dielectric functions (ε1 and ε2), and absorption coefficients (α). For example, a large index contrast of Δn ≈ 2.3 is observed. These exfoliation procedures and related chemistries produce different exfoliated flake dimensions, chemical impurities, carrier doping, and lattice strain that influence the resulting optical properties. First-principles calculations further confirm the impact of lattice defects and doping characteristics on MoS2 optical properties. Overall, incomplete phase reconfiguration (from 1T to mixed crystalline 2H and amorphous phases), lattice vacancies, intraflake strain, and Mo oxidation largely contribute to the observed differences in the reported MoS2 optical properties. These findings highlight the need for controlled technique-induced effects as well as the opportunity for continued development of, and improvement to, liquid phase exfoliation methodologies. Such chemical and processing-induced effects present compelling routes to engineer exfoliated TMDC optical properties toward the development of next-generation high-performance mirrors, narrow bandpass filters, and wavelength-tailored absorbers.

12.
2d Mater ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-38616955

RESUMO

A promising approach for high speed and high power electronics is to integrate two-dimensional (2D) materials with conventional electronic components such as bulk (3D) semiconductors and metals. In this study we explore a basic integration step of inserting a single monolayer MoS2 (1L-MoS2) inside a Au/p-GaN junction and elucidate how it impacts the structural and electrical properties of the junction. Epitaxial 1L-MoS2 in the form of 1-2 µm triangle domains are grown by powder vaporization on a p-doped GaN substrate, and the Au capping layer is deposited by evaporation. Transmission electron microscopy (TEM) of the van der Waals interface indicates that 1L-MoS2 remained distinct and intact between the Au and GaN and that the Au is epitaxial to GaN only when the 1L-MoS2 is present. Quantitative TEM analyses of the van der Waals interfaces are performed and yielded the atomic plane spacings in the heterojunction. Electrical characterization of the all-epitaxial, vertical Au/1L-MoS2/p-GaN heterojunctions enables the derivations of Schottky barrier heights (SBH) and drawing of the band alignment diagram. Notably, 1L-MoS2 appears to be electronically semi-transparent, and thus can be considered as a modifier to the Au contact rather than an independent semiconductor component forming a pn-junction. The I-V analysis and our first principles calculation indicated Fermi level pinning and substantial band bending in GaN at the interface. Lastly, we illustrate how the depletion regions are formed in a bipolar junction with an ultrathin monolayer component using the calculated distribution of the charge density across the Au/1L-MoS2/GaN junction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa