Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 147(5): 1118-31, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118466

RESUMO

SNAREs provide a large part of the specificity and energy needed for membrane fusion and, to do so, must be localized to their correct membranes. Here, we show that the R-SNAREs VAMP8, VAMP3, and VAMP2, which cycle between the plasma membrane and endosomes, bind directly to the ubiquitously expressed, PtdIns4,5P(2)-binding, endocytic clathrin adaptor CALM/PICALM. X-ray crystallography shows that the N-terminal halves of their SNARE motifs bind the CALM(ANTH) domain as helices in a manner that mimics SNARE complex formation. Mutation of residues in the CALM:SNARE interface inhibits binding in vitro and prevents R-SNARE endocytosis in vivo. Thus, CALM:R-SNARE interactions ensure that R-SNAREs, required for the fusion of endocytic clathrin-coated vesicles with endosomes and also for subsequent postendosomal trafficking, are sorted into endocytic vesicles. CALM's role in directing the endocytosis of small R-SNAREs may provide insight into the association of CALM/PICALM mutations with growth retardation, cognitive defects, and Alzheimer's disease.


Assuntos
Endocitose , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Proteínas SNARE/química , Animais , Membrana Celular/metabolismo , Cristalografia por Raios X , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Ratos , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo
2.
Traffic ; 20(12): 974-982, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31503392

RESUMO

CHoP-In (CRISPR/Cas9-mediated Homology-independent PCR-product integration) is a fast, non-homologous end-joining based, strategy for genomic editing in mammalian cells. There is no requirement for cloning in generation of the integration donor, instead the desired integration donor is produced as a polymerase chain reaction (PCR) product, flanked by the Cas9 recognition sequences of the target locus. When co-transfected with the cognate Cas9 and guide RNA, double strand breaks are introduced at the target genomic locus and at both ends of the PCR product. This allows incorporation into the genomic locus via hon-homologous end joining. The approach is versatile, allowing N-terminal, C-terminal or internal tag integration and gives predictable genomic integrations, as demonstrated for a selection of well characterised membrane trafficking proteins. The lack of donor vectors offers advantages over existing methods in terms of both speed and hands-on time. As such this approach will be a useful addition to the genome editing toolkit of those working in mammalian cell systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Quebras de DNA de Cadeia Dupla , Células HeLa , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
3.
J Cell Sci ; 132(20)2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636158

RESUMO

Adaptor protein (AP) complexes are heterotetramers that select cargo for inclusion into transport vesicles. Five AP complexes (AP-1 to AP-5) have been described, each with a distinct localisation and function. Furthermore, patients with a range of disorders, particularly involving the nervous system, have now been identified with mutations in each of the AP complexes. In many cases this has been correlated with aberrantly localised membrane proteins. In this Cell Science at a Glance article and the accompanying poster, we summarize what is known about the five AP complexes and discuss how this helps to explain the clinical features of the different genetic disorders.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Doenças Genéticas Inatas , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos
4.
PLoS Biol ; 16(1): e2004411, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29381698

RESUMO

The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR), GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas , Endossomos/fisiologia , Complexo de Golgi/fisiologia , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/fisiologia , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Fenótipo , Transporte Proteico , Paraplegia Espástica Hereditária/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Traffic ; 17(4): 400-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26756312

RESUMO

The adaptor protein 4 (AP4) complex (ϵ/ß4/µ4/σ4 subunits) forms a non-clathrin coat on vesicles departing the trans-Golgi network. AP4 biology remains poorly understood, in stark contrast to the wealth of molecular data available for the related clathrin adaptors AP1 and AP2. AP4 is important for human health because mutations in any AP4 subunit cause severe neurological problems, including intellectual disability and progressive spastic para- or tetraplegias. We have used a range of structural, biochemical and biophysical approaches to determine the molecular basis for how the AP4 ß4 C-terminal appendage domain interacts with tepsin, the only known AP4 accessory protein. We show that tepsin harbors a hydrophobic sequence, LFxG[M/L]x[L/V], in its unstructured C-terminus, which binds directly and specifically to the C-terminal ß4 appendage domain. Using nuclear magnetic resonance chemical shift mapping, we define the binding site on the ß4 appendage by identifying residues on the surface whose signals are perturbed upon titration with tepsin. Point mutations in either the tepsin LFxG[M/L]x[L/V] sequence or in its cognate binding site on ß4 abolish in vitro binding. In cells, the same point mutations greatly reduce the amount of tepsin that interacts with AP4. However, they do not abolish the binding between tepsin and AP4 completely, suggesting the existence of additional interaction sites between AP4 and tepsin. These data provide one of the first detailed mechanistic glimpses at AP4 coat assembly and should provide an entry point for probing the role of AP4-coated vesicles in cell biology, and especially in neuronal function.


Assuntos
Complexo 4 de Proteínas Adaptadoras/metabolismo , Complexo 4 de Proteínas Adaptadoras/química , Complexo 4 de Proteínas Adaptadoras/genética , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Mutação Puntual , Ligação Proteica
6.
Traffic ; 16(12): 1210-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403691

RESUMO

The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.


Assuntos
Biologia Celular/história , Vesículas Revestidas por Clatrina/metabolismo , Clatrina , Animais , Clatrina/química , Clatrina/história , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Conformação Proteica , Transporte Proteico
7.
Hum Mol Genet ; 24(17): 4984-96, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26085577

RESUMO

Adaptor proteins (AP 1-5) are heterotetrameric complexes that facilitate specialized cargo sorting in vesicular-mediated trafficking. Mutations in AP5Z1, encoding a subunit of the AP-5 complex, have been reported to cause hereditary spastic paraplegia (HSP), although their impact at the cellular level has not been assessed. Here we characterize three independent fibroblast lines derived from skin biopsies of patients harbouring nonsense mutations in AP5Z1 and presenting with spastic paraplegia accompanied by neuropathy, parkinsonism and/or cognitive impairment. In all three patient-derived lines, we show that there is complete loss of AP-5 ζ protein and a reduction in the associated AP-5 µ5 protein. Using ultrastructural analysis, we show that these patient-derived lines consistently exhibit abundant multilamellar structures that are positive for markers of endolysosomes and are filled with aberrant storage material organized as exaggerated multilamellar whorls, striated belts and 'fingerprint bodies'. This phenotype can be replicated in a HeLa cell culture model by siRNA knockdown of AP-5 ζ. The cellular phenotype bears striking resemblance to features described in a number of lysosomal storage diseases (LSDs). Collectively, these findings reveal an emerging picture of the role of AP-5 in endosomal and lysosomal homeostasis, illuminates a potential pathomechanism that is relevant to the role of AP-5 in neurons and expands the understanding of recessive HSPs. Moreover, the resulting accumulation of storage material in endolysosomes leads us to propose that AP-5 deficiency represents a new type of LSDs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Endossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Mutação , Idoso , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA
8.
Brain ; 138(Pt 8): 2147-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26068709

RESUMO

Congenital inability to feel pain is very rare but the identification of causative genes has yielded significant insights into pain pathways and also novel targets for pain treatment. We report a novel recessive disorder characterized by congenital insensitivity to pain, inability to feel touch, and cognitive delay. Affected individuals harboured a homozygous missense mutation in CLTCL1 encoding the CHC22 clathrin heavy chain, p.E330K, which we demonstrate to have a functional effect on the protein. We found that CLTCL1 is significantly upregulated in the developing human brain, displaying an expression pattern suggestive of an early neurodevelopmental role. Guided by the disease phenotype, we investigated the role of CHC22 in two human neural crest differentiation systems; human induced pluripotent stem cell-derived nociceptors and TRKB-dependant SH-SY5Y cells. In both there was a significant downregulation of CHC22 upon the onset of neural differentiation. Furthermore, knockdown of CHC22 induced neurite outgrowth in neural precursor cells, which was rescued by stable overexpression of small interfering RNA-resistant CHC22, but not by mutant CHC22. Similarly, overexpression of wild-type, but not mutant, CHC22 blocked neurite outgrowth in cells treated with retinoic acid. These results reveal an essential and non-redundant role for CHC22 in neural crest development and in the genesis of pain and touch sensing neurons.


Assuntos
Cadeias Pesadas de Clatrina/genética , Mutação/genética , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Dor/genética , Tato/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Dor/metabolismo
9.
PLoS Biol ; 9(10): e1001170, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22022230

RESUMO

Adaptor protein (AP) complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Reguladoras de Apoptose/genética , Subunidades do Complexo de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Células HeLa , Humanos , Filogenia , Estrutura Quaternária de Proteína , Transporte Proteico/genética , Homologia de Sequência , Paraplegia Espástica Hereditária/genética
10.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578286

RESUMO

The AP-1 adaptor complex is found in all eukaryotes, but it has been implicated in different pathways in different organisms. To look directly at AP-1 function, we generated stably transduced HeLa cells coexpressing tagged AP-1 and various tagged membrane proteins. Live cell imaging showed that AP-1 is recruited onto tubular carriers trafficking from the Golgi apparatus to the plasma membrane, as well as onto transferrin-containing early/recycling endosomes. Analysis of single AP-1 vesicles showed that they are a heterogeneous population, which starts to sequester cargo 30 min after exit from the ER. Vesicle capture showed that AP-1 vesicles contain transmembrane proteins found at the TGN and early/recycling endosomes, as well as lysosomal hydrolases, but very little of the anterograde adaptor GGA2. Together, our results support a model in which AP-1 retrieves proteins from post-Golgi compartments back to the TGN, analogous to COPI's role in the early secretory pathway. We propose that this is the function of AP-1 in all eukaryotes.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Transporte Proteico , Fator de Transcrição AP-1 , Humanos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Células HeLa , Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
11.
Nature ; 450(7169): 570-4, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-18033301

RESUMO

Soluble NSF attachment protein receptors (SNAREs) are type II transmembrane proteins that have critical roles in providing the specificity and energy for transport-vesicle fusion and must therefore be correctly partitioned between vesicle and organelle membranes. Like all other cargo, SNAREs need to be sorted into the forming vesicles by direct interaction with components of the vesicles' coats. Here we characterize the molecular details governing the sorting of a SNARE into clathrin-coated vesicles, namely the direct recognition of the three-helical bundle H(abc) domain of the mouse SNARE Vti1b by the human clathrin adaptor epsinR (EPNR, also known as CLINT1). Structures of each domain and of their complex show that this interaction (dissociation constant 22 muM) is mediated by surface patches composed of approximately 15 residues each, the topographies of which are dependent on each domain's overall fold. Disruption of the interface with point mutations abolishes the interaction in vitro and causes Vti1b to become relocalized to late endosomes and lysosomes. This new class of highly specific, surface-surface interaction between the clathrin coat component and the cargo is distinct from the widely observed binding of short, linear cargo motifs by the assembly polypeptide (AP) complex and GGA adaptors and is therefore not vulnerable to competition from standard motif-containing cargoes for incorporation into clathrin-coated vesicles. We propose that conceptually similar but mechanistically different interactions will direct the post-Golgi trafficking of many SNAREs.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Qb-SNARE/química
12.
Nat Commun ; 14(1): 2167, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061511

RESUMO

Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.


Assuntos
Parasitos , Toxoplasma , Animais , Parasitos/metabolismo , Toxoplasma/metabolismo , Endocitose , Proteínas de Protozoários/metabolismo
13.
Traffic ; 11(6): 843-55, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20214754

RESUMO

Sorting signals for cargo selection into coated vesicles are usually in the form of short linear motifs. Three motifs for clathrin-mediated endocytosis have been identified: YXXPhi, [D/E]XXXL[L/I] and FXNPXY. To search for new endocytic motifs, we made a library of CD8 chimeras with random sequences in their cytoplasmic tails, and used a novel fluorescence-activated cell sorting (FACS)-based assay to select for endocytosed constructs. Out of the five tails that were most efficiently internalized, only one was found to contain a conventional motif. Two contain dileucine-like sequences that appear to be variations on the [D/E]XXXL[L/I] motif. Another contains a novel internalization signal, YXXXPhiN, which is able to function in cells expressing a mutant mu2 that cannot bind YXXPhi, indicating that it is not a variation on the YXXPhi motif. Similar sequences are present in endogenous proteins, including a functional YXXXPhiN (in addition to a classical YXXPhi) in cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Thus, the repertoire of endocytic motifs is more extensive than the three well-characterized sorting signals.


Assuntos
Endocitose , Fator de Transcrição AP-2/química , Motivos de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4 , Separação Celular , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Mutação , Linfócitos T Citotóxicos/imunologia
14.
Traffic ; 10(11): 1696-710, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19847956

RESUMO

The GGAs [Golgi-localised, gamma-ear containing, ARF (ADP ribosylation factor)-binding proteins] and the AP-1 (adaptor protein-1) complex are both adaptors for clathrin-mediated intracellular trafficking, but their relationship to each other is unclear. We have used two complementary systems, HeLa cells and Drosophila Dmel2 cells, to investigate GGA and AP-1 function. Immunoelectron microscopy of endogenous AP-1 and GGA in Dmel2 cells shows that they are predominantly associated with distinct clathrin-coated structures. Depletion of either GGA or AP-1 by RNAi does not affect the incorporation of the other adaptor into clathrin-coated vesicles (CCVs), and the cargo protein GFP-LERP (green fluorescent protein-lysosomal enzyme receptor protein) is lost from CCVs only when both adaptors are depleted. Similar results were obtained using HeLa cells treated with siRNA to deplete all three GGAs simultaneously. AP-1 was still incorporated into CCVs after GGA depletion and vice versa, and both needed to be depleted for a robust inhibition of receptor-mediated sorting of lysosomal hydrolases. In contrast, downregulation of major histocompatibility complex (MHC) class I by HIV-1 Nef, which requires AP-1, was not affected by a triple GGA knockdown. Thus, our results indicate that the two adaptors can function independently of each other.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/ultraestrutura , Animais , Vesículas Revestidas por Clatrina/metabolismo , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/ultraestrutura , Transfecção
15.
J Cell Biol ; 175(4): 571-8, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17116749

RESUMO

Clathrin-coated vesicles (CCVs) facilitate the transport of cargo between the trans-Golgi network, endosomes, and the plasma membrane. This study presents the first comparative proteomics investigation of CCVs. A CCV-enriched fraction was isolated from HeLa cells and a "mock CCV" fraction from clathrin-depleted cells. We used a combination of 2D difference gel electrophoresis and isobaric tags for relative and absolute quantification (iTRAQ) in conjunction with mass spectrometry to analyze and compare the two fractions. In total, 63 bona fide CCV proteins were identified, including 28 proteins whose association with CCVs had not previously been established. These include numerous post-Golgi SNAREs; subunits of the AP-3, retromer, and BLOC-1 complexes; lysosomal enzymes; CHC22; and five novel proteins of unknown function. The strategy outlined in this paper should be widely applicable as a means of distinguishing genuine organelle components from contaminants.


Assuntos
Vesículas Revestidas por Clatrina/química , Proteômica/métodos , Proteínas Adaptadoras de Transporte Vesicular/análise , Proteínas Adaptadoras de Transporte Vesicular/química , Eletroforese em Gel Bidimensional , Células HeLa , Humanos , Espectrometria de Massas
16.
J Cell Biol ; 220(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464297

RESUMO

Adaptor protein complex 5 (AP-5) and its partners, SPG11 and SPG15, are recruited onto late endosomes and lysosomes. Here we show that recruitment of AP-5/SPG11/SPG15 is enhanced in starved cells and occurs by coincidence detection, requiring both phosphatidylinositol 3-phosphate (PI3P) and Rag GTPases. PI3P binding is via the SPG15 FYVE domain, which, on its own, localizes to early endosomes. GDP-locked RagC promotes recruitment of AP-5/SPG11/SPG15, while GTP-locked RagA prevents its recruitment. Our results uncover an interplay between AP-5/SPG11/SPG15 and the mTORC1 pathway and help to explain the phenotype of AP-5/SPG11/SPG15 deficiency in patients, including the defect in autophagic lysosome reformation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas/metabolismo , Proteínas de Transporte/química , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Nucleotídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Domínios Proteicos
17.
Traffic ; 9(8): 1354-71, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18489706

RESUMO

Auxilin is a cofactor for Hsc70-mediated uncoating of clathrin-coated vesicles (CCVs). However, small interfering RNA (siRNA) knockdown of the ubiquitous auxilin 2 in HeLa cells only moderately impairs clathrin-dependent trafficking. In this study, we show that HeLa cells also express auxilin 1, previously thought to be neuron specific, and that both auxilins need to be depleted for inhibition of clathrin-mediated endocytosis and intracellular sorting. Depleting both auxilins cause an approximately 50% reduction in the number of clathrin-coated pits at the plasma membrane but enhances the association of clathrin and adaptors with intracellular membranes. CCV fractions isolated from auxilin-depleted cells have an approximately 1.5-fold increase in clathrin content and more than fivefold increase in the amount of AP-2 adaptor complex and other endocytic machinery, with no concomitant increase in cargo. In addition, the structures isolated from auxilin-depleted cells are on average smaller than CCVs from control cells and are largely devoid of membrane, indicating that they are not CCVs but membraneless clathrin cages. Similar structures are observed by electron microscopy in intact auxilin-depleted HeLa cells. Together, these findings indicate that the two auxilins have overlapping functions and that they not only facilitate the uncoating of CCVs but also prevent the formation of nonproductive clathrin cages in the cytosol.


Assuntos
Auxilinas/fisiologia , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/química , Clatrina/metabolismo , Auxilinas/genética , Citosol/metabolismo , Endocitose , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Choque Térmico HSC70/química , Células HeLa , Humanos , Modelos Biológicos , Neurônios/metabolismo , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/metabolismo
18.
J Virol ; 83(6): 2518-30, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19129443

RESUMO

A critical function of the human immunodeficiency virus type 1 Nef protein is the downregulation of CD4 from the surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to the endocytic machinery, thereby increasing the rate of CD4 internalization. In support of this model, weak binary interactions between CD4, Nef, and the endocytic adaptor complex, AP-2, have been reported. In particular, dileucine and diacidic motifs in the C-terminal flexible loop of Nef have been shown to mediate binding to a combination of the alpha and sigma2 subunits of AP-2. Here, we report the identification of a potential binding site for the Nef diacidic motif on alpha-adaptin. This site comprises two basic residues, lysine-297 and arginine-340, on the alpha-adaptin trunk domain. The mutation of these residues specifically inhibits the ability of Nef to bind AP-2 and downregulate CD4. We also present evidence that the diacidic motif on Nef and the basic patch on alpha-adaptin are both required for the cooperative assembly of a CD4-Nef-AP-2 complex. This cooperativity explains how Nef is able to efficiently downregulate CD4 despite weak binary interactions between components of the tripartite complex.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Antígenos CD4/metabolismo , HIV-1/fisiologia , Domínios e Motivos de Interação entre Proteínas , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Quaternária de Proteína , Alinhamento de Sequência
19.
Mol Biol Cell ; 18(9): 3351-65, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17581864

RESUMO

Major histocompatibility complex class I is down-regulated from the surface of human immunodeficiency virus (HIV)-1-infected cells by Nef, a virally encoded protein that is thought to reroute MHC-I to the trans-Golgi network (TGN) in a phosphofurin acidic cluster sorting protein (PACS) 1, adaptor protein (AP)-1, and clathrin-dependent manner. More recently, an alternative model has been proposed, in which Nef uses AP-1 to direct MHC-I to endosomes and lysosomes. Here, we show that knocking down either AP-1 or clathrin with small interfering RNA inhibits the down-regulation of HLA-A2 (an MHC-I isotype) by Nef in HeLa cells. However, knocking down PACS-1 has no effect, not only on Nef-induced down-regulation of HLA-A2 but also on the localization of other proteins containing acidic cluster motifs. Surprisingly, knocking down AP-2 actually enhances Nef activity. Immuno-electron microscopy labeling of Nef-expressing cells indicates that HLA-A2 is rerouted not to the TGN, but to endosomes. In AP-2-depleted cells, more of the HLA-A2 localizes to the inner vesicles of multivesicular bodies. We propose that depleting AP-2 potentiates Nef activity by altering the membrane composition and dynamics of endosomes and causing increased delivery of HLA-A2 to a prelysosomal compartment.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Regulação para Baixo/genética , Produtos do Gene nef/metabolismo , HIV-1/metabolismo , Antígeno HLA-A2/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Antígeno HLA-A2/ultraestrutura , Células HeLa , Humanos , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana
20.
Trends Cell Biol ; 14(4): 167-74, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15066634

RESUMO

Adaptors select cargo for inclusion into coated vesicles in the late secretory and endocytic pathways. Although originally there were thought to be just two adaptors, AP-1 and AP-2, it is now clear that there are many more: two additional adaptor complexes, AP-3 and AP-4, which might function independently of clathrin; a family of monomeric adaptors, the GGAs; and an ever-growing number of cargo-specific adaptors. The adaptors are targeted to the appropriate membrane at least in part by interacting with phosphoinositides, and, once on the membrane, they form interconnected networks to get different types of cargo into the same vesicle. Adaptors participate in trafficking pathways shared by all cells, and they are also used to generate specialized organelles and to influence cell fate during development.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Vesículas Revestidas/metabolismo , Endocitose/fisiologia , Animais , Humanos , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa