RESUMO
Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.
Assuntos
Astrócitos , Região CA1 Hipocampal , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Receptor PAR-1 , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Região CA1 Hipocampal/metabolismo , Receptor PAR-1/metabolismo , Camundongos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismoRESUMO
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Assuntos
Encéfalo , Metabolismo Energético , Animais , Humanos , Encéfalo/metabolismoRESUMO
Astrocytes have essential roles in central nervous system (CNS) health and disease. During development, immature astrocytes show complex interactions with neurons, endothelial cells, and other glial cell types. Our work and that of others have shown that these interactions are important for astrocytic maturation. However, whether and how these cells work together to control this process remains poorly understood. Here, we test the hypothesis that cooperative interactions of astrocytes with neurons and endothelial cells promote astrocytic maturation. Astrocytes were cultured alone, with neurons, endothelial cells, or a combination of both. This was followed by astrocyte sorting, RNA sequencing, and bioinformatic analysis to detect transcriptional changes. Across culture configurations, 7302 genes were differentially expressed by 4 or more fold and organized into 8 groups that demonstrate cooperative and antagonist effects of neurons and endothelia on astrocytes. We also discovered that neurons and endothelial cells caused splicing of 200 and 781 mRNAs, respectively. Changes in gene expression were validated using quantitative PCR, western blot (WB), and immunofluorescence analysis. We found that the transcriptomic data from the three-culture configurations correlated with protein expression of three representative targets (FAM107A, GAT3, and GLT1) in vivo. Alternative splicing results also correlated with cortical tissue isoform representation of a target (Fibronectin 1) at different developmental stages. By comparing our results to published transcriptomes of immature and mature astrocytes, we found that neurons or endothelia shift the astrocytic transcriptome toward a mature state and that the presence of both cell types has a greater effect on maturation than either cell alone. These results increase our understanding of cellular interactions/pathways that contribute to astrocytic maturation. They also provide insight into how alterations to neurons and/or endothelial cells may alter astrocytes with implications for astrocytic changes in CNS disorders and diseases.
Assuntos
Astrócitos , Transcriptoma , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Neurônios/metabolismo , Neurogênese/fisiologiaRESUMO
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Assuntos
Sistema X-AG de Transporte de Aminoácidos , Ácido Glutâmico , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Sódio , Sinaptossomos/metabolismoRESUMO
In addition to being an amino acid that is incorporated into proteins, glutamate is the most abundant neurotransmitter in the mammalian CNS, the precursor for the inhibitory neurotransmitter γ-aminobutyric acid, and one metabolic step from the tricarboxylic acid cycle intermediate α-ketoglutarate. Extracellular glutamate is cleared by a family of Na+-dependent transporters. These transporters are variably expressed by all cell types in the nervous system, but the bulk of clearance is into astrocytes. GLT-1 and GLAST (also called EAAT2 and EAAT1) mediate this activity and are extremely abundant proteins with their expression enriched in fine astrocyte processes. In this review, we will focus on three topics related to these astrocytic glutamate transporters. First, these transporters co-transport three Na+ ions and a H+ with each molecule of glutamate and counter-transport one K+; they are also coupled to a Cl- conductance. The movement of Na+ is sufficient to cause profound astrocytic depolarization, and the movement of H+ is linked to astrocytic acidification. In addition, the movement of Na+ can trigger the activation of Na+ co-transporters (e.g. Na+-Ca2+ exchangers). We will describe the ways in which these ionic movements have been linked as signals to brain function and/or metabolism. Second, these transporters co-compartmentalize with mitochondria, potentially providing a mechanism to supply glutamate to mitochondria as a source of fuel for the brain. We will provide an overview of the proteins involved, discuss the evidence that glutamate is oxidized, and then highlight some of the un-resolved issues related to glutamate oxidation. Finally, we will review evidence that ischemic insults (stroke or oxygen/glucose deprivation) cause changes in these astrocytic mitochondria and discuss the ways in which these changes have been linked to glutamate transport, glutamate transport-dependent signaling, and altered glutamate metabolism. We conclude with a broader summary of some of the unresolved issues.
Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Comunicação Celular , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Humanos , Transdução de SinaisRESUMO
Until recently, astrocyte processes were thought to be too small to contain mitochondria. However, it is now clear that mitochondria are found throughout fine astrocyte processes and are mobile with neuronal activity resulting in positioning near synapses. In this review, we discuss evidence that astrocytic mitochondria confer selective resiliency to astrocytes during ischemic insults and the functional significance of these mitochondria for normal brain function.
Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Neurônios/metabolismoRESUMO
Intellectual and developmental disabilities (IDDs) are a common group of disorders that frequently share overlapping symptoms, including cognitive deficits, altered attention, seizures, impaired social interactions, and anxiety. The causes of these disorders are varied ranging from early prenatal/postnatal insults to genetic variants that either cause or are associated with an increased likelihood of an IDD. As many of the symptoms observed in individuals with IDDs are a manifestation of altered nervous system function resulting in altered behaviors, it should not be surprising that the field is very dependent upon in vivo model systems. This special issue of Neurobiology of Learning and Memory is focused on the methods and approaches that are being used to model and understand these disorders in mammals. While surveys by the Pew Foundation continue to find a high degree of confidence/trust in scientists by the public, several recent studies have documented issues with reproducibility in scientific publications. This special issue includes both primary research articles and review articles in which careful attention has been made to transparently report methods and use rigorous approaches to ensure reproducibility. Although there have been and will continue to be remarkable advances for treatment of subset of IDDs, it is clear that this field is still in its early stages. There is no doubt that the strategies being used to model IDDs will continue to evolve. We hope this special issue will support this evolution so that we can maintain the trust of the public and elected officials, and continue developing evidence-based approaches to new therapeutics.
Assuntos
Deficiências do Desenvolvimento/psicologia , Modelos Animais de Doenças , Deficiência Intelectual/psicologia , Animais , Deficiências do Desenvolvimento/etiologia , Humanos , Deficiência Intelectual/etiologiaRESUMO
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Assuntos
Astrócitos/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Animais , HumanosRESUMO
Neuroscience is a technology-driven discipline and brain energy metabolism is no exception. Once satisfied with mapping metabolic pathways at organ level, we are now looking to learn what it is exactly that metabolic enzymes and transporters do and when, where do they reside, how are they regulated, and how do they relate to the specific functions of neurons, glial cells, and their subcellular domains and organelles, in different areas of the brain. Moreover, we aim to quantify the fluxes of metabolites within and between cells. Energy metabolism is not just a necessity for proper cell function and viability but plays specific roles in higher brain functions such as memory processing and behavior, whose mechanisms need to be understood at all hierarchical levels, from isolated proteins to whole subjects, in both health and disease. To this aim, the field takes advantage of diverse disciplines including anatomy, histology, physiology, biochemistry, bioenergetics, cellular biology, molecular biology, developmental biology, neurology, and mathematical modeling. This article presents a well-referenced synopsis of the technical side of brain energy metabolism research. Detail and jargon are avoided whenever possible and emphasis is given to comparative strengths, limitations, and weaknesses, information that is often not available in regular articles.
Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Neurociências/métodos , Animais , Humanos , Neurociências/instrumentaçãoRESUMO
Fetal exposure to endocrine disrupting chemicals (EDCs) has been associated with adverse neurobehavioral outcomes across the lifespan and can persist across multiple generations of offspring. However, the underlying mechanisms driving these changes are not well understood. We investigated the molecular perturbations associated with EDC-induced behavioral changes in first (F1) and second (F2) filial generations, using the model EDC bisphenol A (BPA). C57BL/6J dams were exposed to BPA from preconception until lactation through the diet at doses (10⯵g/kg bw/d-lower dose or 10â¯mg/kg bw/d-upper dose) representative of human exposure levels. As adults, F1 male offspring exhibited increased depressive-like behavior, measured by the forced swim test, while females were unaffected. These behavioral changes were limited to the F1 generation and were not associated with altered maternal care. Transcriptome analysis by RNA-sequencing in F1 control and upper dose BPA-exposed adult male hippocampus revealed neurotransmitter systems as major pathways disrupted by developmental BPA exposure. High performance liquid chromatography demonstrated a male-specific reduction in hippocampal serotonin. Administration of the selective serotonin reuptake inhibitor fluoxetine (20â¯mg/kg bw) rescued the depressive-like phenotype in males exposed to lower, but not upper, dose BPA, suggesting distinct mechanisms of action for each exposure dose. Finally, high resolution mass spectrometry revealed reduced circulating levels of the neuroactive steroid dehydroepiandrosterone in BPA-exposed males, suggesting another potential mechanism underlying the depressive-like phenotype. Thus, behavioral changes associated with early life BPA exposure may be mediated by sex-specific disruptions in the serotonergic system and/or sex steroid biogenesis in male offspring.
Assuntos
Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Depressão/induzido quimicamente , Disruptores Endócrinos/farmacologia , Hipotálamo/efeitos dos fármacos , Comportamento Materno/efeitos dos fármacos , Fenóis/farmacologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Fármacos do Sistema Nervoso Central/metabolismo , Depressão/metabolismo , Relação Dose-Resposta a Droga , Feminino , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esteroides/metabolismoRESUMO
UNLABELLED: Recently, mitochondria have been localized to astrocytic processes where they shape Ca(2+) signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca(2+) channel blocker), two inhibitors of reversed Na(+)/Ca(2+) exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca(2+) indicator Lck-GCaMP-6S, we observed two types of Ca(2+) signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by â¼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca(2+) through reversed Na(+)/Ca(2+) exchange triggers mitochondrial loss and dramatic increases in Ca(2+) signaling in astrocytic processes. SIGNIFICANCE STATEMENT: Astrocytes, the most abundant cell type in the brain, are vital integrators of signaling and metabolism. Each astrocyte consists of many long, thin branches, called processes, which ensheathe vasculature and thousands of synapses. Mitochondria occupy the majority of each process. This occupancy is decreased by â¼50% 24 h after an in vitro model of ischemia/reperfusion injury, due to delayed fragmentation and mitophagy. The mechanism appears to be independent of neuropathology, instead involving an extended period of high glutamate uptake into astrocytes. Our data suggest that mitochondria serve as spatial buffers, and possibly even as a source of calcium signals in astrocytic processes. Loss of mitochondria resulted in drastically altered calcium signaling that could disrupt neurovascular coupling and gliotransmission.
Assuntos
Astrócitos/metabolismo , Astrócitos/ultraestrutura , Sinalização do Cálcio/fisiologia , Glucose/deficiência , Hipocampo/patologia , Hipóxia/patologia , Mitocôndrias/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Inibidores Enzimáticos/farmacologia , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Transgênicos , Bloqueadores dos Canais de Sódio/farmacologia , Tacrolimo/farmacologia , Tetrodotoxina/farmacologia , Fatores de TempoRESUMO
Neuron-secreted factors induce astrocytic expression of the glutamate transporter, GLT-1 (excitatory amino acid transporter 2). In addition to their elaborate anatomic relationships with neurons, astrocytes also have processes that extend to and envelop the vasculature. Although previous studies have demonstrated that brain endothelia contribute to astrocyte differentiation and maturation, the effects of brain endothelia on astrocytic expression of GLT-1 have not been examined. In this study, we tested the hypothesis that endothelia induce expression of GLT-1 by co-culturing astrocytes from mice that utilize non-coding elements of the GLT-1 gene to control expression of reporter proteins with the mouse endothelial cell line, bEND.3. We found that endothelia increased steady state levels of reporter and GLT-1 mRNA/protein. Co-culturing with primary rat brain endothelia also increases reporter protein, GLT-1 protein, and GLT-1-mediated glutamate uptake. The Janus kinase/signal transducer and activator of transcription 3, bone morphogenic protein/transforming growth factor ß, and nitric oxide pathways have been implicated in endothelia-to-astrocyte signaling; we provide multiple lines of evidence that none of these pathways mediate the effects of endothelia on astrocytic GLT-1 expression. Using transwells with a semi-permeable membrane, we demonstrate that the effects of the bEND.3 cell line are dependent upon contact. Notch has also been implicated in endothelia-astrocyte signaling in vitro and in vivo. The first step of Notch signaling requires cleavage of Notch intracellular domain by γ-secretase. We demonstrate that the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester blocks endothelia-induced increases in GLT-1. We show that the levels of Notch intracellular domain are higher in nuclei of astrocytes co-cultured with endothelia, an effect also blocked by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Finally, infection of co-cultures with shRNA directed against recombination signal binding protein for immunoglobulin kappa J, a Notch effector, also reduces endothelia-dependent increases in enhanced green fluorescent protein and GLT-1. Together, these studies support a novel role for Notch in endothelia-dependent induction of GLT-1 expression. Cover Image for this issue: doi. 10.1111/jnc.13825.
Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Animais , Técnicas de Cocultura/métodos , Camundongos , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores Notch/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Approximately one in 45 children have been diagnosed with Autism Spectrum Disorder (ASD), which is characterized by social/communication impairments. Recent studies have linked a subset of familial ASD to mutations in the Protocadherin 10 (Pcdh10) gene. Additionally, Pcdh10's expression pattern, as well as its known role within protein networks, implicates the gene in ASD. Subsequently, the neurobiology of mice heterozygous for Pcdh10 (Pcdh10+/-) has been investigated as a proxy for ASD. Male Pcdh10+/- mice have demonstrated sex-specific deficits in social behavior, recapitulating the gender bias observed in ASD. Furthermore, in vitro slice preparations of these Pcdh10+/- mice demonstrate selective decreases to high frequency electrophysiological responses, mimicking clinical observations. The direct in vivo ramifications of such decreased in vitro high frequency responses are unclear. As such, Pcdh10+/- mice and their wild-type (WT) littermates underwent in vivo electrocorticography (ECoG), as well as ex vivo amino acid concentration quantification using High Performance Liquid Chromatography (HPLC). Similar to the previously observed reductions to in vitro high frequency electrophysiological responses in Pcdh10+/- mice, male Pcdh10+/- mice exhibited reduced gamma-band (30-80Hz), but not lower frequency (10 and 20Hz), auditory steady state responses (ASSR). In addition, male Pcdh10+/- mice exhibited decreased signal-to-noise-ratio (SNR) for high gamma-band (60-100Hz) activity. These gamma-band perturbations for both ASSR and SNR were not observed in females. Administration of a GABAB agonist remediated these electrophysiological alterations among male Pcdh10+/-mice. Pcdh10+/- mice demonstrated increased concentrations of GABA and glutamine. Of note, a correlation of auditory gamma-band responses with underlying GABA concentrations was observed in WT mice. This correlation was not present in Pcdh10+/- mice. This study demonstrates the role of Pcdh10 in the regulation of excitatory-inhibitory balance as a function of GABA in ASD.
Assuntos
Baclofeno/farmacologia , Caderinas/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Ácido gama-Aminobutírico/metabolismo , Estimulação Acústica , Animais , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Caderinas/genética , Cromatografia Líquida de Alta Pressão , Eletrocorticografia , Eletrodos Implantados , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Feminino , Glutamina/metabolismo , Masculino , Camundongos Transgênicos , Protocaderinas , Caracteres Sexuais , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologiaRESUMO
We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na(+)/Ca(2+)-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca(2+) signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca(2+). As recently reported, we observed spontaneous Ca(2+) spikes with half-lives of â¼1 s that spread â¼6 µm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca(2+) spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca(2+) signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca(2+)-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1(KK) had a modest effect on the frequency of these Ca(2+) spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca(2+) followed by an increase in the decay time and the spread of the spontaneous Ca(2+) spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca(2+). Together, these studies show that Ca(2+) regulates mitochondrial mobility, and mitochondria in turn regulate Ca(2+) signals in astrocyte processes. SIGNIFICANCE STATEMENT: In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca(2+) buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response to neuronal activity and glutamate uptake. Here, we demonstrate a mechanism by which mitochondria are immobilized in astrocytes subsequent to increases in intracellular [Ca(2+)] and provide evidence that mitochondria contribute to the compartmentalization of spontaneous Ca(2+) signals in astrocyte processes. Immobilization of mitochondria at sites of glutamate uptake in astrocyte processes provides a mechanism to coordinate increases in activity with increases in mitochondrial metabolism.
Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Hipocampo/fisiologia , Dinâmica Mitocondrial/fisiologia , Animais , Animais Recém-Nascidos , Transporte Biológico/fisiologia , Feminino , Hipocampo/citologia , Masculino , Técnicas de Cultura de Órgãos , RatosRESUMO
The Na(+) -dependent glutamate transporter GLT-1 (EAAT2) shows selective expression in astrocytes, and neurons induce the expression of GLT-1 in astrocytes. In an unpublished analysis of GLT-1 promoter reporter mice, we identified an evolutionarily conserved domain of 467 nucleotides ~ 8 kb upstream of the GLT-1 translation start site that is required for astrocytic expression. Using in silico approaches, we identified Pax6 as a transcription factor that could contribute to the control of GLT-1 expression by binding within this region. We demonstrated the expression of Pax6 protein in astrocytes in vivo. Lentiviral transduction of astrocytes with exogenous Pax6 increased the expression of enhanced green fluorescent protein (eGFP) in astrocytes prepared from transgenic mice that use a bacterial artificial chromosome containing a large genomic region surrounding the GLT-1 gene to control expression of eGFP. It also increased GLT-1 protein and GLT-1-mediated uptake, whereas there was no effect on the levels of the other astroglial glutamate transporter, glutamate aspartate transporter (GLAST). Transduction of astrocytes with an shRNA directed against Pax6 reduced neuron-dependent induction of GLT-1 or eGFP. Finally, we confirmed Pax6 interaction with the predicted DNA-binding site in electrophoretic mobility assays and chromatin immunoprecipitation (ChIP). Together, these studies show that Pax6 contributes to the regulation of GLT-1 through an interaction with these distal elements and identify a novel role of Pax6 in astrocyte biology. The astroglial glutamate transporter GLT-1 shows selective expression in astrocytes and its expression can be induced by neurons. In this study, we demonstrate that Pax6 is expressed in astrocytes and binds to the GLT-1 promoter in vitro and in vivo. Exogenous expression of Pax6 increases GLT-1 and enhanced green fluorescent protein (eGFP) expression in astrocytes from a transgenic mouse line that uses the GLT-1 gene to drive eGFP expression, and an shRNA directed against Pax6 attenuates neuron-dependent induction of GLT-1/eGFP. We therefore conclude that Pax6 contributes to the neuron-dependent induction of GLT-1.
Assuntos
Astrócitos/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Encéfalo/citologia , Células Cultivadas , Técnicas de Cocultura , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/genética , Proteínas do Olho/genética , Proteínas do Olho/farmacologia , Gangliosídeos/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/genética , Proteínas Repressoras/farmacologia , Transdução GenéticaRESUMO
Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na(+)/K(+)-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na(+)/Ca(2+) exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake.
Assuntos
Astrócitos/ultraestrutura , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Análise de Variância , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo , Tetrodotoxina/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Transfecção , Proteína Vesicular 1 de Transporte de Glutamato/metabolismoRESUMO
The glutamate transporter GLT-1 is the major route for the clearance of extracellular glutamate in the forebrain, and most GLT-1 protein is found in astrocytes. This protein is coupled to the Na(+) electrochemical gradient, supporting the active intracellular accumulation of glutamate. We recently used a proteomic approach to identify proteins that may interact with GLT-1 in rat cortex, including the Na(+)/K(+) -ATPase, most glycolytic enzymes, and several mitochondrial proteins. We also showed that most GLT-1 puncta (â¼ 70%) are overlapped by mitochondria in astroglial processes in organotypic slices. From this analysis, we proposed that the glycolytic enzyme hexokinase (HK)-1 might physically form a scaffold to link GLT-1 and mitochondria because HK1 is known to interact with the outer mitochondrial membrane protein voltage-dependent anion channel (VDAC). The current study validates the interactions among HK-1, VDAC, and GLT-1 by using forward and reverse immunoprecipitations and provides evidence that a subfraction of HK1 colocalizes with GLT-1 in vivo. A peptide known to disrupt the interaction between HK and VDAC did not disrupt interactions between GLT-1 and several mitochondrial proteins. In parallel experiments, displacement of HK from VDAC reduced GLT-1-mediated glutamate uptake. These results suggest that, although HK1 forms coimmunoprecipitatable complexes with both VDAC and GLT-1, it does not physically link GLT-1 to mitochondrial proteins. However, the interaction of HK1 with VDAC supports GLT-1-mediated transport activity.
Assuntos
Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Hexoquinase/metabolismo , Proteínas Mitocondriais/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Córtex Cerebral/ultraestrutura , Hexoquinase/química , Imunoprecipitação , Masculino , Membranas Mitocondriais/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismoRESUMO
The glutamate transporter-1 [GLT-1 (excitatory amino acid transporter 2)] subtype of glutamate transporter ensures crisp excitatory signaling and limits excitotoxicity in the CNS. Astrocytic expression of GLT-1 is regulated during development, by neuronal activity, and in neurodegenerative diseases. Although neurons activate astrocytic expression of GLT-1, the mechanisms involved have not been identified. In the present study, astrocytes from transgenic mice that express enhanced green fluorescent protein (eGFP) under the control of a bacterial artificial chromosome (BAC) containing a very large region of DNA surrounding the GLT-1 gene (BAC GLT-1 eGFP mice) were used to assess the role of nuclear factor-κB (NF-κB) in neuron-dependent activation of the GLT-1 promoter. We provide evidence that neurons activate NF-κB signaling in astrocytes. Transduction of astrocytes from the BAC GLT-1 eGFP mice with dominant-negative inhibitors of NF-κB signaling completely blocked neuron-dependent activation of a NF-κB reporter construct and attenuated induction of eGFP. Exogenous expression of p65 and/or p50 NF-κB subunits induced expression of eGFP or GLT-1 and increased GLT-1-mediated transport activity. Using wild-type and mutant GLT-1 promoter reporter constructs, we found that NF-κB sites at -583 or -251 relative to the transcription start site were required for neuron-dependent reporter activation. Electrophoretic mobility shift and supershift assays reveal that p65 and p50 interact with these same sites ex vivo. Finally, chromatin immunoprecipitation showed that p65 and p50 interact with these sites in adult cortex, but not in kidney (a tissue that expresses no detectable GLT-1). Together, these studies strongly suggest that NF-κB contributes to neuron-dependent regulation of astrocytic GLT-1 transcription.
Assuntos
Astrócitos/metabolismo , Comunicação Celular/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , CamundongosRESUMO
Efficient excitatory transmission depends on a family of transporters that use the Na(+)-electrochemical gradient to maintain low synaptic concentrations of glutamate. These transporters consume substantial energy in the spatially restricted space of fine astrocytic processes. GLT-1 (EAAT2) mediates the bulk of this activity in forebrain. To date, relatively few proteins have been identified that associate with GLT-1. In the present study, GLT-1 immunoaffinity isolates were prepared from rat cortex using three strategies and analyzed by liquid chromatography-coupled tandem mass spectrometry. In addition to known interacting proteins, the analysis identified glycolytic enzymes and outer mitochondrial proteins. Using double-label immunofluorescence, GLT-1 was shown to colocalize with the mitochondrial matrix protein, ubiquinol-cytochrome c reductase core protein 2 or the inner mitochondrial membrane protein, ADP/ATP translocase, in rat cortex. In biolistically transduced hippocampal slices, fluorescently tagged GLT-1 puncta overlapped with fluorescently tagged mitochondria along fine astrocytic processes. In a Monte Carlo-type computer simulation, this overlap was significantly more frequent than would occur by chance. Furthermore, fluorescently tagged hexokinase-1 overlapped with mitochondria or GLT-1, strongly suggesting that GLT-1, mitochondria, and the first step in glycolysis are cocompartmentalized in astrocytic processes. Acute inhibition of glycolysis or oxidative phosphorylation had no effect on glutamate uptake in hippocampal slices, but simultaneous inhibition of both processes significantly reduced transport. Together with previous results, these studies show that GLT-1 cocompartmentalizes with Na(+)/K(+) ATPase, glycolytic enzymes, and mitochondria, providing a mechanism to spatially match energy and buffering capacity to the demands imposed by transport.
Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Masculino , Translocases Mitocondriais de ADP e ATP/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).