Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248158

RESUMO

Kleiber's empirical law, which describes that metabolism increases as the mass to the power 3/4, has arguably remained life sciences' enigma since its formal uncovering in 1930. Why is this behavior sustained over many orders of magnitude? There have been quantitative rationalizations put forward for both plants and animals based on realistic mechanisms. However, universality in scaling laws of this kind, like in critical phenomena, has not yet received substantiation. Here, we provide an account, with quantitative reproduction of the available data, of the metabolism for these two biology kingdoms by means of broad arguments based on statistical mechanics and nonlinear dynamics. We consider iterated renormalization group (RG) fixed-point maps that are associated with an extensive generalized (Tsallis) entropy. We find two unique universality classes that satisfy the 3/4 power law. One corresponds to preferential attachment processes-rich gets richer-and the other to critical processes that suppress the effort for motion. We discuss and generalize our findings to other empirical laws that exhibit similar situations, using data based on general but different concepts that form a conjugate pair that gives rise to the same power-law exponents.

2.
Entropy (Basel) ; 24(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36554166

RESUMO

The limit of validity of ordinary statistical mechanics and the pertinence of Tsallis statistics beyond it is explained considering the most probable evolution of complex systems processes. To this purpose we employ a dissipative Landau-Ginzburg kinetic equation that becomes a generic one-dimensional nonlinear iteration map for discrete time. We focus on the Renormalization Group (RG) fixed-point maps for the three routes to chaos. We show that all fixed-point maps and their trajectories have analytic closed-form expressions, not only (as known) for the intermittency route to chaos but also for the period-doubling and the quasiperiodic routes. These expressions have the form of q-exponentials, while the kinetic equation's Lyapunov function becomes the Tsallis entropy. That is, all processes described by the evolution of the fixed-point trajectories are accompanied by the monotonic progress of the Tsallis entropy. In all cases the action of the fixed-point map attractor imposes a severe impediment to access the system's built-in configurations, leaving only a subset of vanishing measure available. Only those attractors that remain chaotic have ineffective configuration set reduction and display ordinary statistical mechanics. Finally, we provide a brief description of complex system research subjects that illustrates the applicability of our approach.

3.
Proc Natl Acad Sci U S A ; 111(39): 14082-7, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25189773

RESUMO

We show that size-rank distributions with power-law decay (often only over a limited extent) observed in a vast number of instances in a widespread family of systems obey Tsallis statistics. The theoretical framework for these distributions is analogous to that of a nonlinear iterated map near a tangent bifurcation for which the Lyapunov exponent is negligible or vanishes. The relevant statistical-mechanical expressions associated with these distributions are derived from a maximum entropy principle with the use of two different constraints, and the resulting duality of entropy indexes is seen to portray physically relevant information. Whereas the value of the index α fixes the distribution's power-law exponent, that for the dual index 2 - α ensures the extensivity of the deformed entropy.

4.
Chaos ; 26(12): 123105, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28039973

RESUMO

It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional one appears to be illuminating.

5.
Chaos ; 22(1): 013109, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462985

RESUMO

Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [B. Luque et al., PLoS ONE 6, 9 (2011)] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here, we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree distributions, mean distances, clustering coefficients, etc., associated to the bifurcation cascades and their accumulation points. We describe how the resultant families of graphs can be framed into a renormalization group scheme in which fixed-point graphs reveal their scaling properties. These fixed points are then re-derived from an entropy optimization process defined for the graph sets, confirming a suggested connection between renormalization group and entropy optimization. Finally, we provide analytical and numerical results for the graph entropy and show that it emulates the Lyapunov exponent of the map independently of its sign.


Assuntos
Algoritmos , Dinâmica não Linear , Oscilometria/métodos , Simulação por Computador
6.
PLoS One ; 17(12): e0279448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36574373

RESUMO

The consideration of an existing stochastic approach for the reproduction of ranked data pointed at a formal equivalence between its key mathematical expression and that for trajectories at the tangent bifurcation. This fact led to a nonlinear dynamical approach for rank distributions that shows similarities with universality classes in critical phenomena. The renormalization group (RG) fixed-point map f*(x) for a tangent bifurcation of arbitrary nonlinearity z > 1 has proved to be a powerful tool into which the formalism can be couched. The source distribution P(N) of the stochastic approach can be linked to f*(x) while the size-rank N(k) and frequency-rank F(k') distributions are obtained, respectively, from the map trajectories xt and the sums of its positions. We provide now an extension to Number Theory as we obtain from the trajectories xt of f*(x) the numbers, or asymptotic approximations of them, for the Factorial, Natural, Prime and Fibonacci sets. A measure of the advance of these numbers towards infinity is given by sums of positions that represent their reciprocals. We specify rank distribution universality classes, already associated with real data, to these number sets. We find that the convergence of the series of number reciprocals occurs first at nonlinearity z = 2, that which corresponds to the classical Zipf law, and link this transition edge to the action of the attractor when it first reduces the fractal dimension of trajectory positions to zero. Furthermore, the search of logarithmic corrections common to borderline dimensions provides a link to the Prime numbers set. Finally, we find corroborating evidence of these logarithmic corrections from the analysis of large data sets for ranked earthquake magnitudes. The formalism links all types of ranked distributions to a generalized extensive entropy.


Assuntos
Terremotos , Dinâmica não Linear , Entropia , Fractais
7.
Phys Rev Lett ; 107(3): 038101, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838406

RESUMO

A discrete-time version of the replicator equation for two-strategy games is studied. The stationary properties differ from those of continuous time for sufficiently large values of the parameters, where periodic and chaotic behavior replace the usual fixed-point population solutions. We observe the familiar period-doubling and chaotic-band-splitting attractor cascades of unimodal maps but in some cases more elaborate variations appear due to bimodality. Also unphysical stationary solutions can have unusual physical implications, such as the uncertainty of the final population caused by sensitivity to initial conditions and fractality of attractor preimage manifolds.


Assuntos
Evolução Biológica , Dinâmica não Linear , Periodicidade , Fatores de Tempo
8.
PLoS One ; 14(2): e0211226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716119

RESUMO

We present an equivalence between stochastic and deterministic variable approaches to represent ranked data and find the expressions obtained to be suggestive of statistical-mechanical meanings. We first reproduce size-rank distributions N(k) from real data sets by straightforward considerations based on the assumed knowledge of the background probability distribution P(N) that generates samples of random variable values similar to real data. The choice of different functional expressions for P(N): power law, exponential, Gaussian, etc., leads to different classes of distributions N(k) for which we find examples in nature. Then we show that all of these types of functions can be alternatively obtained from deterministic dynamical systems. These correspond to one-dimensional nonlinear iterated maps near a tangent bifurcation whose trajectories are proved to be precise analogues of the N(k). We provide explicit expressions for the maps and their trajectories and find they operate under conditions of vanishing or small Lyapunov exponent, therefore at or near a transition to or out of chaos. We give explicit examples ranging from exponential to logarithmic behavior, including Zipf's law. Adoption of the nonlinear map as the formalism central character is a useful viewpoint, as variation of its few parameters, that modify its tangency property, translate into the different classes for N(k).


Assuntos
Modelos Teóricos , Dinâmica não Linear , Distribuição Normal
9.
PLoS One ; 12(10): e0186015, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982160

RESUMO

We examine the relationship between two different types of ranked data, frequencies and magnitudes. We consider data that can be sorted out either way, through numbers of occurrences or size of the measures, as it is the case, say, of moon craters, earthquakes, billionaires, etc. We indicate that these two types of distributions are functional inverses of each other, and specify this link, first in terms of the assumed parent probability distribution that generates the data samples, and then in terms of an analog (deterministic) nonlinear iterated map that reproduces them. For the particular case of hyperbolic decay with rank the distributions are identical, that is, the classical Zipf plot, a pure power law. But their difference is largest when one displays logarithmic decay and its counterpart shows the inverse exponential decay, as it is the case of Benford law, or viceversa. For all intermediate decay rates generic differences appear not only between the power-law exponents for the midway rank decline but also for small and large rank. We extend the theoretical framework to include thermodynamic and statistical-mechanical concepts, such as entropies and configuration.


Assuntos
Modelos Estatísticos , Probabilidade , Termodinâmica
10.
Heliyon ; 1(3): e00045, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27441229

RESUMO

We demonstrate that dual entropy expressions of the Tsallis type apply naturally to statistical-mechanical systems that experience an exceptional contraction of their configuration space. The entropic index [Formula: see text] describes the contraction process, while the dual index [Formula: see text] defines the contraction dimension at which extensivity is restored. We study this circumstance along the three routes to chaos in low-dimensional nonlinear maps where the attractors at the transitions, between regular and chaotic behavior, drive phase-space contraction for ensembles of trajectories. We illustrate this circumstance for properties of systems that find descriptions in terms of nonlinear maps. These are size-rank functions, urbanization and similar processes, and settings where frequency locking takes place.

11.
Artigo em Inglês | MEDLINE | ID: mdl-23767578

RESUMO

The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.


Assuntos
Algoritmos , Gráficos por Computador , Modelos Estatísticos , Dinâmica não Linear , Análise Numérica Assistida por Computador , Simulação por Computador
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 031103, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517450

RESUMO

We consider renewal stochastic processes generated by nonindependent events from the perspective that their basic distribution and associated generating functions obey the statistical-mechanical structure of systems with interacting degrees of freedom. Based on this fact we look briefly into the less-known case of processes that display phase transitions along time. When the density distribution ψ{n}(t) for the occurrence of the nth event at time t is considered to be a partition function, of a "microcanonical" type for n "degrees of freedom" at fixed "energy" t, one obtains a set of four partition functions of which that for the generating function variable z and Laplace transform variable ε, conjugate to n and t, respectively, plays a central role. These partition functions relate to each other in the customary way and in accordance to the precepts of large deviations theory, while the entropy, or Massieu potential, derived from ψ{n}(t) satisfies an Euler relation. We illustrate this scheme first for an ordinary renewal process of events generated by a simple exponential waiting-time distribution ψ(t). Then we examine a process modeled after the so-called Hamiltonian mean-field model that is representative of agents that perform a repeated task with an associated outcome, such as an opinion poll. When a sequence of (many) events takes place in a sufficiently short time the process exhibits clustering of the outcome, but for larger times the process resembles that of independent events. The two regimes are separated by a sharp transition, technically of the second order. Finally we point out the existence of a similar scheme for random-walk processes.

13.
PLoS One ; 6(9): e22411, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915254

RESUMO

The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.


Assuntos
Algoritmos , Dinâmica não Linear
14.
Science ; 300(5617): 249-51, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12705228
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa