Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant J ; 109(2): 447-470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399442

RESUMO

The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.


Assuntos
Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Plantas/imunologia , Transdução de Sinais , Agricultura , Mudança Climática , Resistência à Doença , Meio Ambiente , Plantas/genética , Estresse Fisiológico
2.
Proc Natl Acad Sci U S A ; 117(30): 18099-18109, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669441

RESUMO

Quantitative disease resistance (QDR) represents the predominant form of resistance in natural populations and crops. Surprisingly, very limited information exists on the biomolecular network of the signaling machineries underlying this form of plant immunity. This lack of information may result from its complex and quantitative nature. Here, we used an integrative approach including genomics, network reconstruction, and mutational analysis to identify and validate molecular networks that control QDR in Arabidopsis thaliana in response to the bacterial pathogen Xanthomonas campestris To tackle this challenge, we first performed a transcriptomic analysis focused on the early stages of infection and using transgenic lines deregulated for the expression of RKS1, a gene underlying a QTL conferring quantitative and broad-spectrum resistance to XcampestrisRKS1-dependent gene expression was shown to involve multiple cellular activities (signaling, transport, and metabolism processes), mainly distinct from effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses already characterized in Athaliana Protein-protein interaction network reconstitution then revealed a highly interconnected and distributed RKS1-dependent network, organized in five gene modules. Finally, knockout mutants for 41 genes belonging to the different functional modules of the network revealed that 76% of the genes and all gene modules participate partially in RKS1-mediated resistance. However, these functional modules exhibit differential robustness to genetic mutations, indicating that, within the decentralized structure of the QDR network, some modules are more resilient than others. In conclusion, our work sheds light on the complexity of QDR and provides comprehensive understanding of a QDR immune network.


Assuntos
Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno , Imunomodulação , Modelos Biológicos , Doenças das Plantas/etiologia , Imunidade Vegetal , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fenótipo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transcriptoma
3.
New Phytol ; 235(3): 875-884, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451507

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor-like kinases (RLKs) containing an extracellular proline-rich domain. While they are thought to be putative sensors of the cell wall integrity, there are very few reports on their biological functions in the plant, as compared with other RLKs. Several studies support a role for PERKs in plant growth and development, but their effect on the cell wall composition to regulate cell expansion is still lacking. Gene expression data suggest that they may intervene in response to environmental changes, in agreement with their subcellular localization. And there is growing evidence for PERKs as novel sensors of environmental stresses such as insects and viruses. However, little is known about their precise role in plant immunity and in the extracellular network of RLKs, as no PERK-interacting RLK or any coreceptor has been identified as yet. Similarly, their signaling activities and downstream signaling components are just beginning to be deciphered, including Ca2+ fluxes, reactive oxygen species accumulation and phosphorylation events. Here we outline emerging roles for PERKs as novel sensors of environmental stresses, and we discuss how to better understand this overlooked class of receptor kinases via several avenues of research.


Assuntos
Parede Celular , Prolina , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases
4.
Proc Natl Acad Sci U S A ; 115(24): E5440-E5449, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29848634

RESUMO

Infectious diseases are often affected by specific pairings of hosts and pathogens and therefore by both of their genomes. The integration of a pair of genomes into genome-wide association mapping can provide an exquisitely detailed view of the genetic landscape of complex traits. We present a statistical method, ATOMM (Analysis with a Two-Organism Mixed Model), that maps a trait of interest to a pair of genomes simultaneously; this method makes use of whole-genome sequence data for both host and pathogen organisms. ATOMM uses a two-way mixed-effect model to test for genetic associations and cross-species genetic interactions while accounting for sample structure including interactions between the genetic backgrounds of the two organisms. We demonstrate the applicability of ATOMM to a joint association study of quantitative disease resistance (QDR) in the Arabidopsis thaliana-Xanthomonas arboricola pathosystem. Our method uncovers a clear host-strain specificity in QDR and provides a powerful approach to identify genetic variants on both genomes that contribute to phenotypic variation.


Assuntos
Arabidopsis/genética , Genoma/genética , Interações Hospedeiro-Patógeno/genética , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Locos de Características Quantitativas/genética , Xanthomonas/genética
5.
PLoS Genet ; 13(12): e1007143, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29272270

RESUMO

Plant pathogens with a broad host range are able to infect plant lineages that diverged over 100 million years ago. They exert similar and recurring constraints on the evolution of unrelated plant populations. Plants generally respond with quantitative disease resistance (QDR), a form of immunity relying on complex genetic determinants. In most cases, the molecular determinants of QDR and how they evolve is unknown. Here we identify in Arabidopsis thaliana a gene mediating QDR against Sclerotinia sclerotiorum, agent of the white mold disease, and provide evidence of its convergent evolution in multiple plant species. Using genome wide association mapping in A. thaliana, we associated the gene encoding the POQR prolyl-oligopeptidase with QDR against S. sclerotiorum. Loss of this gene compromised QDR against S. sclerotiorum but not against a bacterial pathogen. Natural diversity analysis associated POQR sequence with QDR. Remarkably, the same amino acid changes occurred after independent duplications of POQR in ancestors of multiple plant species, including A. thaliana and tomato. Genome-scale expression analyses revealed that parallel divergence in gene expression upon S. sclerotiorum infection is a frequent pattern in genes, such as POQR, that duplicated both in A. thaliana and tomato. Our study identifies a previously uncharacterized gene mediating QDR against S. sclerotiorum. It shows that some QDR determinants are conserved in distantly related plants and have emerged through the repeated use of similar genetic polymorphisms at different evolutionary time scales.


Assuntos
Resistência à Doença/genética , Serina Endopeptidases/genética , Arabidopsis/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Prolil Oligopeptidases , Serina Endopeptidases/metabolismo
6.
New Phytol ; 222(1): 480-496, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30393937

RESUMO

Quantitative disease resistance (QDR) is a form of plant immunity widespread in nature, and the only one active against broad host range fungal pathogens. The genetic determinants of QDR are complex and largely unknown, and are thought to rely partly on genes controlling plant morphology and development. We used genome-wide association mapping in Arabidopsis thaliana to identify ARPC4 as associated with QDR against the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Mutants impaired in ARPC4 showed enhanced susceptibility to S. sclerotiorum, defects in the structure of the actin filaments and in their responsiveness to S. sclerotiorum. Disruption of ARPC4 also alters callose deposition and the expression of defense-related genes upon S. sclerotiorum infection. Analysis of ARPC4 diversity in A. thaliana identified one haplotype (ARPC4R ) showing a c. 1 kbp insertion in ARPC4 regulatory region and associated with higher level of QDR. Accessions from the ARPC4R haplotype showed enhanced ARPC4 expression upon S. sclerotiorum challenge, indicating that polymorphisms in ARPC4 regulatory region are associated with enhanced QDR. This work identifies a novel actor of plant QDR against a fungal pathogen and provides a prime example of genetic mechanisms leading to the recruitment of cell morphology processes in plant immunity.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/genética , Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Doenças das Plantas/microbiologia , Polimorfismo Genético , Alelos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ecótipo , Estudo de Associação Genômica Ampla , Mutação/genética , Doenças das Plantas/genética
7.
Plant J ; 90(4): 720-737, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27870294

RESUMO

In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.


Assuntos
Biologia de Sistemas/métodos , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia
8.
PLoS Genet ; 9(9): e1003766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068949

RESUMO

The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Imunidade Inata , Fosfotransferases/genética , Doenças das Plantas/genética , Alelos , Arabidopsis/imunologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidade
10.
BMC Genomics ; 15: 336, 2014 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-24886033

RESUMO

BACKGROUND: The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood. RESULTS: We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns. CONCLUSIONS: These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética
11.
Plant Cell ; 23(9): 3498-511, 2011 09.
Artigo em Inglês | MEDLINE | ID: mdl-21917550

RESUMO

Plant and animal pathogens inject type III effectors (T3Es) into host cells to suppress host immunity and promote successful infection. XopD, a T3E from Xanthomonas campestris pv vesicatoria, has been proposed to promote bacterial growth by targeting plant transcription factors and/or regulators. Here, we show that XopD from the B100 strain of X. campestris pv campestris is able to target MYB30, a transcription factor that positively regulates Arabidopsis thaliana defense and associated cell death responses to bacteria through transcriptional activation of genes related to very-long-chain fatty acid (VLCFA) metabolism. XopD specifically interacts with MYB30, resulting in inhibition of the transcriptional activation of MYB30 VLCFA-related target genes and suppression of Arabidopsis defense. The helix-loop-helix domain of XopD is necessary and sufficient to mediate these effects. These results illustrate an original strategy developed by Xanthomonas to subvert plant defense and promote development of disease.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Xanthomonas campestris/patogenicidade , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Imunidade Vegetal , Relação Estrutura-Atividade , Virulência , Xanthomonas campestris/metabolismo
12.
C R Biol ; 347: 35-44, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771313

RESUMO

In nature, plants defend themselves against pathogen attack by activating an arsenal of defense mechanisms. During the last decades, work mainly focused on the understanding of qualitative disease resistance mediated by a few genes conferring an almost complete resistance, while quantitative disease resistance (QDR) remains poorly understood despite the fact that it represents the predominant and more durable form of resistance in natural populations and crops. Here, we review our past and present work on the dissection of the complex mechanisms underlying QDR in Arabidopsis thaliana. The strategies, main steps and challenges of our studies related to one atypical QDR gene, RKS1 (Resistance related KinaSe 1), are presented. First, from genetic analyses by QTL (Quantitative Trait Locus) mapping and GWAs (Genome Wide Association studies), the identification, cloning and functional analysis of this gene have been used as a starting point for the exploration of the multiple and coordinated pathways acting together to mount the QDR response dependent on RKS1. Identification of RKS1 protein interactors and complexes was a first step, systems biology and reconstruction of protein networks were then used to decipher the molecular roadmap to the immune responses controlled by RKS1. Finally, exploration of the potential impact of key components of the RKS1-dependent gene network on leaf microbiota offers interesting and challenging perspectives to decipher how the plant immune systems interact with the microbial communities' systems.


Dans la nature, les plantes se défendent contre les attaques pathogènes en activant tout un arsenal de mécanismes de défense. Au cours des décennies passées, la recherche s'est principalement focalisée sur la compréhension de la résistance qualitative médiée par quelques gènes majeurs conférant une résistance quasi complète, alors que la résistance quantitative (QDR) demeure peu comprise bien qu'elle représente la forme de résistance prédominante et la plus durable dans les populations naturelles ou les cultures. Nous donnons ici une revue de nos travaux passés et présents sur la dissection des mécanismes complexes qui sous-tendent la QDR chez Arabidopsis thaliana. Les stratégies, étapes clés et défis de nos études concernant un gène QDR atypique, RKS1 (Resistance related KinaSe 1), sont rapportés. En premier lieu, à partir d'analyses génétiques par cartographie de QTL et GWA, l'identification, le clonage et l'analyse fonctionnelle de ce gène ont été utilisés comme point de départ à l'exploration des voies multiples et coordonnées agissant ensemble pour le développement de la réponse QDR dépendante de RKS1. L'identification des interacteurs et complexes protéiques impliquant RKS1 a été une première étape, la biologie des systèmes et la reconstruction de réseaux d'interactions protéines-protéines ont ensuite été mises en œuvre pour décoder les voies moléculaires conduisant aux réponses immunitaires contrôlées par RKS1. Finalement, l'exploration de l'impact potentiel de composantes clés du réseau de gènes dépendant de RKS1 sur le microbiote, offre des perspectives intéressantes et ambitieuses pour comprendre comment le système immunitaire de la plante interagit avec le système des communautés microbiennes.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Biologia de Sistemas , Resistência à Doença/genética , Arabidopsis/genética , Arabidopsis/imunologia , Imunidade Vegetal/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/genética , Plantas/imunologia , Estudo de Associação Genômica Ampla , Proteínas de Arabidopsis/genética
13.
Mol Ecol ; 22(16): 4222-4240, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23875782

RESUMO

Despite the increasing number of genomic tools, identifying the genetics underlying adaptive complex traits remains challenging in the model species Arabidopsis thaliana. This is due, at least in part, to the lack of data on the geographical scale of adaptive phenotypic variation. The aims of this study were (i) to tease apart the historical roles of adaptive and nonselective processes in shaping phenological variation in A. thaliana in France and (ii) to gain insights into the spatial scale of adaptive variation by identifying the putative selective agents responsible for this selection. Forty-nine natural stands from four climatically contrasted French regions were characterized (i) phenologically for six traits, (ii) genetically using 135 SNP markers and (iii) ecologically for 42 variables. Up to 63% of phenological variation could be explained by neutral genetic diversity. The remaining phenological variation displayed stronger associations with ecological variation within regions than among regions, suggesting the importance of local selective agents in shaping adaptive phenological variation. Although climatic conditions have often been suggested as the main selective agents acting on phenology in A. thaliana, both edaphic conditions and interspecific competition appear to be strong selective agents in some regions. In a first attempt to identify the genetics of phenological variation at different geographical scales, we phenotyped worldwide accessions and local polymorphic populations from the French RegMap in a genome-wide association (GWA) mapping study. The genomic regions associated with phenological variation depended upon the geographical scale considered, stressing the need to account for the scale of adaptive phenotypic variation when choosing accession panels for GWAS.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis , Clima , Ecossistema , Variação Genética , Seleção Genética , Adaptação Fisiológica/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Flores/genética , Flores/crescimento & desenvolvimento , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
14.
Proc Natl Acad Sci U S A ; 107(34): 15281-6, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696912

RESUMO

The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fosfolipases A2 Secretórias/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Mutação , Fosfolipases A2 Secretórias/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , RNA de Plantas/genética , RNA de Plantas/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/fisiologia , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
15.
Plant Physiol ; 156(1): 29-45, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21386033

RESUMO

Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.


Assuntos
Alcanos/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Doenças das Plantas/imunologia , Estresse Fisiológico , Ceras/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Vias Biossintéticas , Suscetibilidade a Doenças , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Especificidade de Órgãos , Fenótipo , Componentes Aéreos da Planta/enzimologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/microbiologia , Componentes Aéreos da Planta/fisiologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/enzimologia , Epiderme Vegetal/genética , Epiderme Vegetal/microbiologia , Epiderme Vegetal/fisiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Plântula/enzimologia , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia
16.
PLoS Pathog ; 5(1): e1000264, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19148278

RESUMO

Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition. However, the interaction of the resulting plants with the environment must be analyzed carefully to ensure that there are no undesirable side effects of lignin modification. We show here that Arabidopsis thaliana mutants with impaired 5-hydroxyguaiacyl O-methyltransferase (known as caffeate O-methyltransferase; COMT) function were more susceptible to various bacterial and fungal pathogens. Unexpectedly, asexual sporulation of the downy mildew pathogen, Hyaloperonospora arabidopsidis, was impaired on these mutants. Enhanced resistance to downy mildew was not correlated with increased plant defense responses in comt1 mutants but coincided with a higher frequency of oomycete sexual reproduction within mutant tissues. Comt1 mutants but not wild-type Arabidopsis accumulated soluble 2-O-5-hydroxyferuloyl-L-malate. The compound weakened mycelium vigor and promoted sexual oomycete reproduction when applied to a homothallic oomycete in vitro. These findings suggested that the accumulation of 2-O-5-hydroxyferuloyl-L-malate accounted for the observed comt1 mutant phenotypes during the interaction with H. arabidopsidis. Taken together, our study shows that an artificial downregulation of COMT can drastically alter the interaction of a plant with the biotic environment.


Assuntos
Arabidopsis/enzimologia , Lignina/biossíntese , Metiltransferases/genética , Oomicetos/patogenicidade , Arabidopsis/genética , Metiltransferases/metabolismo , Oomicetos/fisiologia , Doenças das Plantas/genética , Reprodução
17.
Front Plant Sci ; 12: 683373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305981

RESUMO

In a local environment, plant networks include interactions among individuals of different species and among genotypes of the same species. While interspecific interactions are recognized as main drivers of plant community patterns, intraspecific interactions have recently gained attention in explaining plant community dynamics. However, an overview of intraspecific genotype-by-genotype interaction patterns within wild plant species is still missing. From the literature, we identified 91 experiments that were mainly designed to investigate the presence of positive interactions based on two contrasting hypotheses. Kin selection theory predicts partisan help given to a genealogical relative. The rationale behind this hypothesis relies on kin/non-kin recognition, with the positive outcome of kin cooperation substantiating it. On the other hand, the elbow-room hypothesis supports intraspecific niche partitioning leading to positive outcome when genetically distant genotypes interact. Positive diversity-productivity relationship rationalizes this hypothesis, notably with the outcome of overyielding. We found that both these hypotheses have been highly supported in experimental studies despite their opposite predictions between the extent of genetic relatedness among neighbors and the level of positive interactions. Interestingly, we identified a highly significant effect of breeding system, with a high proportion of selfing species associated with the presence of kin cooperation. Nonetheless, we identified several shortcomings regardless of the species considered, such as the lack of a reliable estimate of genetic relatedness among genotypes and ecological characterization of the natural habitats from which genotypes were collected, thereby impeding the identification of selective drivers of positive interactions. We therefore propose a framework combining evolutionary ecology and genomics to establish the eco-genomic landscape of positive GxG interactions in wild plant species.

18.
Front Plant Sci ; 12: 741122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899774

RESUMO

Plants are daily challenged by multiple abiotic and biotic stresses. A major biotic constraint corresponds to competition with other plant species. Although plants simultaneously interact with multiple neighboring species throughout their life cycle, there is still very limited information about the genetics of the competitive response in the context of plurispecific interactions. Using a local mapping population of Arabidopsis thaliana, we set up a genome wide association study (GWAS) to estimate the extent of genetic variation of competitive response in 12 plant species assemblages, based on three competitor species (Poa annua, Stellaria media, and Veronica arvensis). Based on five phenotypic traits, we detected strong crossing reaction norms not only between the three bispecific neighborhoods but also among the plurispecific neighborhoods. The genetic architecture of competitive response was highly dependent on the identity and the relative abundance of the neighboring species. In addition, most of the enriched biological processes underlying competitive responses largely differ among neighborhoods. While the RNA related processes might confer a broad range response toolkit for multiple traits in diverse neighborhoods, some processes, such as signaling and transport, might play a specific role in particular assemblages. Altogether, our results suggest that plants can integrate and respond to different species assemblages depending on the identity and number of each neighboring species, through a large range of candidate genes associated with diverse and unexpected processes leading to developmental and stress responses.

19.
Mol Plant Microbe Interact ; 23(7): 846-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20521948

RESUMO

Studies of the interaction between Arabidopsis thaliana and the necrotrophic fungal pathogen Sclerotinia sclerotiorum have been hampered by the extreme susceptibility of this model plant to the fungus. In addition, analyses of the plant defense response suggested the implication of a complex interplay of hormonal and signaling pathways. To get a deeper insight into this host-pathogen interaction, we first analyzed the natural variation in Arabidopsis for resistance to S. sclerotiorum. The results revealed a large variation of resistance and susceptibility in Arabidopsis, with some ecotypes, such as Ws-4, Col-0, and Rbz-1, being strongly resistant, and others, such as Shahdara, Ita-0, and Cvi-0, exhibiting an extreme susceptibility. The role of different signaling pathways in resistance was then determined by assessing the symptoms of mutants affected in the perception, production, or transduction of hormonal signals after inoculation with S. sclerotiorum. This analysis led to the conclusions that i) signaling of inducible defenses is predominantly mediated by jasmonic acid and abscisic acid, influenced by ethylene, and independent of salicylic acid; and ii) nitric oxide (NO) and reactive oxygen species are important signals required for plant resistance to S. sclerotiorum. Defense gene expression analysis supported the specific role of NO in defense activation.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Óxido Nítrico/metabolismo , Doenças das Plantas/microbiologia , Transdução de Sinais/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/classificação , Brassica rapa/metabolismo , Brassica rapa/microbiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Interações Hospedeiro-Patógeno , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio , Ácido Salicílico/metabolismo
20.
Mol Plant Microbe Interact ; 22(4): 469-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19271961

RESUMO

We previously reported that patatin-like protein 2 (PLP2), a pathogen-induced patatin-like lipid acyl hydrolase, promotes cell death and negatively affects Arabidopsis resistance to the fungus Botrytis cinerea and to the bacteria Pseudomonas syringae. We show here that, on the contrary, PLP2 contributes to resistance to Cucumber mosaic virus, an obligate parasite inducing the hypersensitive response. These contrasted impacts on different pathosystems were also reflected by differential effects on defense gene induction. To examine a possible link between PLP2 lipolytic activity and oxylipin metabolism, gene expression profiling was performed and identified B. cinerea among these pathogens as the strongest inducer of most oxylipin biosynthetic genes. Quantitative oxylipin profiling in wild-type and PLP2-modified, Botrytis-challenged plants established the massive accumulation of oxidized fatty acid derivatives in infected leaves. Several compounds previously described as modulating plant tissue damage and issued from the alpha-dioxygenase pathway were found to accumulate in a PLP2-dependent manner. Finally, the contribution of PLP2 to genetically controlled cell death was evaluated using PLP2-silenced or -overexpressing plants crossed with the lesion mimic mutant vascular-associated death 1 (vad1). Phenotypic analysis of double-mutant progeny showed that PLP2 expression strongly promotes necrotic symptoms in vad1 leaves. Collectively, our data indicate that PLP2 is an integral component of the plant cell death execution machinery, possibly providing fatty acid precursors for the biosynthesis of specific oxylipins and differentially affecting resistance to pathogens with distinct lifestyles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Morte Celular , Hidrolases/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Botrytis/patogenicidade , Cucumovirus/patogenicidade , Perfilação da Expressão Gênica , Hidrolases/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa