Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Expert Syst Appl ; 195: 116540, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075334

RESUMO

With coronavirus disease 2019 (COVID-19) cases rising rapidly, deep learning has emerged as a promising diagnosis technique. However, identifying the most accurate models to characterize COVID-19 patients is challenging because comparing results obtained with different types of data and acquisition processes is non-trivial. In this paper we designed, evaluated, and compared the performance of 20 convolutional neutral networks in classifying patients as COVID-19 positive, healthy, or suffering from other pulmonary lung infections based on chest computed tomography (CT) scans, serving as the first to consider the EfficientNet family for COVID-19 diagnosis and employ intermediate activation maps for visualizing model performance. All models are trained and evaluated in Python using 4173 chest CT images from the dataset entitled "A COVID multiclass dataset of CT scans," with 2168, 758, and 1247 images of patients that are COVID-19 positive, healthy, or suffering from other pulmonary infections, respectively. EfficientNet-B5 was identified as the best model with an F1 score of 0.9769 ± 0.0046, accuracy of 0.9759 ± 0.0048, sensitivity of 0.9788 ± 0.0055, specificity of 0.9730 ± 0.0057, and precision of 0.9751 ± 0.0051. On an alternate 2-class dataset, EfficientNetB5 obtained an accuracy of 0.9845 ± 0.0109, F1 score of 0.9599 ± 0.0251, sensitivity of 0.9682 ± 0.0099, specificity of 0.9883 ± 0.0150, and precision of 0.9526 ± 0.0523. Intermediate activation maps and Gradient-weighted Class Activation Mappings offered human-interpretable evidence of the model's perception of ground-class opacities and consolidations, hinting towards a promising use-case of artificial intelligence-assisted radiology tools. With a prediction speed of under 0.1 s on GPUs and 0.5 s on CPUs, our proposed model offers a rapid, scalable, and accurate diagnostic for COVID-19.

2.
Biomed Eng Online ; 17(1): 6, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357893

RESUMO

BACKGROUND: Hippocampal atrophy is a supportive feature for the diagnosis of probable Alzheimer's disease (AD). However, even for an expert neuroradiologist, tracing the hippocampus and measuring its volume is a time consuming and extremely challenging task. Accordingly, the development of reliable fully-automated segmentation algorithms is of paramount importance. MATERIALS AND METHODS: The present study evaluates (i) the precision and the robustness of the novel Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation algorithm and (ii) its clinical reliability for AD diagnosis. For these purposes, we used a mixed cohort of 456 subjects and their T1 weighted magnetic resonance imaging (MRI) brain scans. The cohort included 145 controls (CTRL), 217 mild cognitive impairment (MCI) subjects and 94 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject the baseline, repeat, 12 and 24 month follow-up scans were available. RESULTS: HUMAN provides hippocampal volumes with a 3% precision; volume measurements effectively reveal AD, with an area under the curve (AUC) AUC1 = 0.08 ± 0.02. Segmented volumes can also reveal the subtler effects present in MCI subjects, AUC2 = 0.76 ± 0.05. The algorithm is stable and reproducible over time, even for 24 month follow-up scans. CONCLUSIONS: The experimental results demonstrate HUMAN is a precise segmentation algorithm, besides hippocampal volumes, provided by HUMAN, can effectively support the diagnosis of Alzheimer's disease and become a useful tool for other neuroimaging applications.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Processamento de Imagem Assistida por Computador , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Atrofia/complicações , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão
3.
Comput Med Imaging Graph ; 115: 102386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718562

RESUMO

A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI), can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE). Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive, inspiring the epilepsy community to devise ways to predict which TBI patients will develop PTE and to identify potential biomarkers. In response to this need, our study collected comprehensive, longitudinal multimodal data from 48 TBI patients across multiple participating institutions. A supervised binary classification task was created, contrasting data from LPTS patients with those without LPTS. To accommodate missing modalities in some subjects, we took a two-pronged approach. Firstly, we extended a graphical model-based Bayesian estimator to directly classify subjects with incomplete modality. Secondly, we explored conventional imputation techniques. The imputed multimodal information was then combined, following several fusion and dimensionality reduction techniques found in the literature, and subsequently fitted to a kernel- or a tree-based classifier. For this fusion, we proposed two new algorithms: recursive elimination of correlated components (RECC) that filters information based on the correlation between the already selected features, and information decomposition and selective fusion (IDSF), which effectively recombines information from decomposed multimodal features. Our cross-validation findings showed that the proposed IDSF algorithm delivers superior performance based on the area under the curve (AUC) score. Ultimately, after rigorous statistical comparisons and interpretable machine learning examination using Shapley values of the most frequently selected features, we recommend the two following magnetic resonance imaging (MRI) abnormalities as potential biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the right middle temporal gyrus in functional MRI (fMRI).


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Aprendizado de Máquina , Neuroimagem , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Neuroimagem/métodos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Epilepsia Pós-Traumática/diagnóstico por imagem , Epilepsia Pós-Traumática/etiologia , Imagem Multimodal/métodos , Convulsões/diagnóstico por imagem , Teorema de Bayes , Pessoa de Meia-Idade
4.
Signal Image Video Process ; 17(4): 907-914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35371333

RESUMO

Since December 2019, the novel coronavirus disease 2019 (COVID-19) has claimed the lives of more than 3.75 million people worldwide. Consequently, methods for accurate COVID-19 diagnosis and classification are necessary to facilitate rapid patient care and terminate viral spread. Lung infection segmentations are useful to identify unique infection patterns that may support rapid diagnosis, severity assessment, and patient prognosis prediction, but manual segmentations are time-consuming and depend on radiologic expertise. Deep learning-based methods have been explored to reduce the burdens of segmentation; however, their accuracies are limited due to the lack of large, publicly available annotated datasets that are required to establish ground truths. For these reasons, we propose a semi-automatic, threshold-based segmentation method to generate region of interest (ROI) segmentations of infection visible on lung computed tomography (CT) scans. Infection masks are then used to calculate the percentage of lung abnormality (PLA) to determine COVID-19 severity and to analyze the disease progression in follow-up CTs. Compared with other COVID-19 ROI segmentation methods, on average, the proposed method achieved improved precision ( 47.49 % ) and specificity ( 98.40 % ) scores. Furthermore, the proposed method generated PLAs with a difference of ± 3.89 % from the ground-truth PLAs. The improved ROI segmentation results suggest that the proposed method has potential to assist radiologists in assessing infection severity and analyzing disease progression in follow-up CTs.

5.
Future Virol ; 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35783674

RESUMO

Laboratory tests seeking to improve detection of COVID-19 have been widely developed by laboratories and commercial companies. This review provides an overview of molecular and antigen tests, presents the sensitivity and specificity for 329 assays that have received US FDA Emergency Use Authorization and evaluates six sample collection methods - nasal, nasopharyngeal, oropharyngeal swabs, saliva, blood and stool. Molecular testing is preferred for diagnosis of COVID-19, but negative results do not always rule out the presence of infection, especially when clinical suspicion is high. Sensitivity and specificity ranged from 88.1 to 100% and 88 to 100%, respectively. Antigen tests may be more easy to use and rapid. However, they have reported a wide range of detection sensitivities from 16.7 to 85%, which may potentially yield many false-negative results.

6.
Curr Med Imaging ; 19(5): 442-455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35726407

RESUMO

BACKGROUND: In 2019, a series of novel pneumonia cases later known as Coronavirus Disease 2019 (COVID-19) were reported in Wuhan, China. Chest computed tomography (CT) has played a key role in the management and prognostication of COVID-19 patients. CT has demonstrated 98% sensitivity in detecting COVID-19, including identifying lung abnormalities that are suggestive of COVID-19, even among asymptomatic individuals. METHODS: We conducted a comprehensive literature review of 17 published studies, focusing on three subgroups, pediatric patients, pregnant women, and patients over 60 years old, to identify key characteristics of chest CT in COVID-19 patients. RESULTS: Our comprehensive review of the 17 studies concluded that the main CT imaging finding is ground glass opacities (GGOs) regardless of patient age. We also identified that crazy paving pattern, reverse halo sign, smooth or irregular septal thickening, and pleural thickening may serve as indicators of disease progression. Lesions on CT scans were dominantly distributed in the peripheral zone with multilobar involvement, specifically concentrated in the lower lobes. In the patients over 60 years old, the proportion of substantial lobe involvement was higher than the control group and crazy paving signs, bronchodilation, and pleural thickening were more commonly present. CONCLUSION: Based on all 17 studies, CT findings in COVID-19 have shown a predictable pattern of evolution over the disease. These studies have proven that CT may be an effective approach for early screening and detection of COVID-19.


Assuntos
COVID-19 , Gravidez , Humanos , Feminino , Criança , Pessoa de Meia-Idade , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 302-305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891296

RESUMO

Traumatic brain injury (TBI) is a sudden injury that causes damage to the brain. TBI can have wide-ranging physical, psychological, and cognitive effects. TBI outcomes include acute injuries, such as contusion or hematoma, as well as chronic sequelae that emerge days to years later, including cognitive decline and seizures. Some TBI patients develop posttraumatic epilepsy (PTE), or recurrent and unprovoked seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis, the process by which a normal brain becomes capable of generating seizures. These biomarkers would allow for a higher standard of care by identifying patients at risk of developing PTE as candidates for antiepileptogenic interventions. In this paper, we use deep neural network architectures to automatically detect potential biomarkers of PTE from electroencephalogram (EEG) data collected between post-injury day 1-7 from patients with moderate-to-severe TBI. Continuous EEG is often part of multimodal monitoring for TBI patients in intensive care units. Clinicians review EEG to identify the presence of epileptiform abnormalities (EAs), such as seizures, periodic discharges, and abnormal rhythmic delta activity, which are potential biomarkers of epileptogenesis. We show that a recurrent neural network trained with continuous EEG data can be used to identify EAs with the highest accuracy of 80.78%, paving the way for robust, automated detection of epileptiform activity in TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Aprendizado Profundo , Epilepsia Pós-Traumática , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Eletroencefalografia , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Humanos , Convulsões
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa