Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174221, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914341

RESUMO

The drainage of peatlands followed by land use conversion significantly impacts on the fluxes of green-house gases (GHGs, i.e. CO2, CH4, and N2O) to and from the atmosphere, driven by changes in soil properties and microbial communities. In this study, we compared saturated peatlands with drained ones used for sheep grazing or cultivated, which are common in South-West Iceland. These areas exhibit different degrees of soil saturation and nitrogen (N) content, reflecting the anthropic pressure gradient. We aimed at covering knowledge gaps about lack of estimates on N2O fluxes and drainage, by assessing the emissions of GHGs, and the impact of land conversion on these emissions. Moreover, we investigated soil microbial community functional diversity, and its connection with processes contributing to GHGs emission. GHGs emissions differed between saturated and drained peatlands, with increased soil respiration rates (CO2 emissions) and N mineralization (N2O), consistent with the trend of anthropogenic pressure. Drainage drastically reduced methane (CH4) emissions but increased CO2 emissions, resulting in a higher global warming potential (GWP). Cultivation, involving occasional tillage and fertilization, further increased N2O emissions, mediated by higher N availability and conditions favorable to nitrification. Functional genes mirrored the overall trend, showing a shift from prevalent methanogenic archaea (mcrA) in saturated peatlands to nitrifiers (amoA) in drained-cultivated areas. Environmental variables and nutrient content were critical factors affecting community composition in both environments, which overall affected the GHGs emissions and the relative contribution of the three gases.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Metano , Microbiologia do Solo , Solo , Islândia , Metano/análise , Gases de Efeito Estufa/análise , Solo/química , Dióxido de Carbono/análise , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Óxido Nitroso/análise , Microbiota , Agricultura , Aquecimento Global
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa