Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(7): 1971-1983, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36607159

RESUMO

Nitrogen (N) availability has been considered as a critical factor for the cycling and storage of soil organic carbon (SOC), but effects of N enrichment on the SOC pool appear highly variable. Given the complex nature of the SOC pool, recent frameworks suggest that separating this pool into different functional components, for example, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), is of great importance for understanding and predicting SOC dynamics. Importantly, little is known about how these N-induced changes in SOC components (e.g., changes in the ratios among these fractions) would affect the functionality of the SOC pool, given the differences in nutrient density, resistance to disturbance, and turnover time between POC and MAOC pool. Here, we conducted a global meta-analysis of 803 paired observations from 98 published studies to assess the effect of N addition on these SOC components, and the ratios among these fractions. We found that N addition, on average, significantly increased POC and MAOC pools by 16.4% and 3.7%, respectively. In contrast, both the ratios of MAOC to SOC and MAOC to POC were remarkably decreased by N enrichment (4.1% and 10.1%, respectively). Increases in the POC pool were positively correlated with changes in aboveground plant biomass and with hydrolytic enzymes. However, the positive responses of MAOC to N enrichment were correlated with increases in microbial biomass. Our results suggest that although reactive N deposition could facilitate soil C sequestration to some extent, it might decrease the nutrient density, turnover time, and resistance to disturbance of the SOC pool. Our study provides mechanistic insights into the effects of N enrichment on the SOC pool and its functionality at global scale, which is pivotal for understanding soil C dynamics especially in future scenarios with more frequent and severe perturbations.


Assuntos
Carbono , Solo , Nitrogênio/análise , Biomassa , Plantas , Minerais , Poeira
2.
Sci Total Environ ; 793: 148569, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328984

RESUMO

Soil organic carbon (SOC), as the largest terrestrial carbon pool, plays an important role in global carbon (C) cycling, which may be significantly impacted by global changes such as nitrogen (N) fertilization, elevated carbon dioxide (CO2), warming, and increased precipitation. Yet, our ability to accurately detect and predict the impact of these global changes on SOC dynamics is still limited. Investigating SOC responses to global changes separately for mineral-associated organic carbon (MAOC) and the particulate organic carbon (POC) can aid in the understanding of overall SOC responses, because these are formed, protected, and lost through different pathways. To this end, we performed a systematic meta-analysis of the response of SOC, MAOC, and POC to global changes. POC was particularly responsive, confirming that it is a better diagnostic indicator of soil C changes in the short-term, compared to bulk SOC and MAOC. The effects of elevated CO2 and warming were subtle and evident only in the POC fraction (+5.11% and - 10.05%, respectively), while increased precipitation had no effects at all. Nitrogen fertilization, which comprised the majority of the dataset, increased SOC (+5.64%), MAOC (+4.49%), and POC (+13.17%). Effect size consistently varied with soil depth and experiment length, highlighting the importance of long-term experiments that sample the full soil profile in global change SOC studies. In addition, SOC pool responses to warming were modified by degree of warming, differently for air and soil warming manipulations. Overall, we suggest that MAOC and POC respond differently to global changes and moderators because of the different formation and loss processes that control these pools. Coupled with additional plant and microbial measurements, studying the individual responses of POC and MAOC improves understanding of the underlying dynamics of SOC responses to global change. This will help inform the role of SOC in mitigating the climate crisis.


Assuntos
Carbono , Solo , Sequestro de Carbono , Minerais , Material Particulado
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa