Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256876

RESUMO

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Assuntos
Anormalidades Craniofaciais/etiologia , Glicosilfosfatidilinositóis/biossíntese , Glicosilfosfatidilinositóis/deficiência , Deformidades Congênitas da Mão/etiologia , Perda Auditiva Neurossensorial/etiologia , Deficiência Intelectual/etiologia , Manosiltransferases/genética , Doenças Metabólicas/etiologia , Mutação , Unhas Malformadas/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Convulsões/patologia , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Glicosilfosfatidilinositóis/genética , Deformidades Congênitas da Mão/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Masculino , Doenças Metabólicas/patologia , Unhas Malformadas/patologia , Linhagem , Doenças do Sistema Nervoso Periférico/patologia , Convulsões/genética , Índice de Gravidade de Doença , Adulto Jovem
2.
Am J Med Genet A ; 188(4): 1226-1232, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890115

RESUMO

Short telomere syndromes constitute a heterogeneous group of clinical conditions characterized by short telomeres and impaired telomerase activity due to pathogenic variants in the essential telomerase components. Dyskeratosis congenita (DC) is a rare, multisystemic telomere biology disorder characterized by abnormal skin pigmentation, oral leukoplakia and nail dysplasia along with various somatic findings. Hoyeraal-Hreidarsson syndrome (HHS) is generally an autosomal recessively inherited subgroup showing growth retardation, microcephaly, cerebellar hypoplasia and severe immunodeficiency. We here report on a consanguineous family from Turkey, in which a missense variant in the reverse transcriptase domain of the TERT gene segregated with short telomere lengths and was associated with full-blown short telomere syndrome phenotype in the index; and heterogeneous adult-onset manifestations in heterozygous individuals.


Assuntos
Disceratose Congênita , Deficiência Intelectual , Microcefalia , Telomerase , Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Disceratose Congênita/patologia , Retardo do Crescimento Fetal , Humanos , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/genética
3.
J Am Soc Nephrol ; 32(1): 223-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020172

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are one of the most common malformations identified in the fetal stage. Bilateral renal agenesis (BRA) represents the most severe and fatal form of CAKUT. Only three genes have been confirmed to have a causal role in humans (ITGA8, GREB1L, and FGF20). METHODS: Genome sequencing within a diagnostic setting and combined data repository analysis identified a novel gene. RESULTS: Two patients presented with BRA, detected during the prenatal period, without additional recognizable malformations. They had parental consanguinity and similarly affected, deceased siblings, suggesting autosomal recessive inheritance. Evaluation of homozygous regions in patient 1 identified a novel, nonsense variant in GFRA1 (NM_001348097.1:c.676C>T, p.[Arg226*]). We identified 184 patients in our repository with renal agenesis and analyzed their exome/genome data. Of these 184 samples, 36 were from patients who presented with isolated renal agenesis. Two of them had loss-of-function variants in GFRA1. The second patient was homozygous for a frameshift variant (NM_001348097.1:c.1294delA, p.[Thr432Profs*13]). The GFRA1 gene encodes a receptor on the Wolffian duct that regulates ureteric bud outgrowth in the development of a functional renal system, and has a putative role in the pathogenesis of Hirschsprung disease. CONCLUSIONS: These findings strongly support the causal role of GFRA1-inactivating variants for an autosomal recessive, nonsyndromic form of BRA. This knowledge will enable early genetic diagnosis and better genetic counseling for families with BRA.


Assuntos
Alelos , Anormalidades Congênitas/genética , Genes Recessivos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Nefropatias/congênito , Rim/anormalidades , Exoma , Feminino , Aconselhamento Genético , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Homozigoto , Humanos , Rim/patologia , Nefropatias/genética , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Sistema Urinário/patologia
4.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875846

RESUMO

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Assuntos
Exoma , Deficiência Intelectual , Sequência de Bases , Exoma/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso , Fenótipo , Sequenciamento do Exoma
5.
Nat Commun ; 15(1): 1758, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413582

RESUMO

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Assuntos
Distrofias Musculares , Criança , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
6.
Orphanet J Rare Dis ; 17(1): 179, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505348

RESUMO

BACKGROUND: Ceroid lipofuscinoses neuronal 6 (CLN6) disease belongs to the neuronal ceroid lipofuscinoses (NCLs), complex and genetically heterogeneous disorders with wide geographical and phenotypic variation. The first clinical signs usually appear between 18 months and 8 years, but examples of later-onset have also been reported. Common manifestations include ataxia, seizures, vision impairment, and developmental regression. Because these are shared by other neurological diseases, identification of CLN6 genetic variants is imperative for early diagnosis. RESULTS: We present one of the largest cohorts to date of genetically diagnosed CLN6 patients screened at a single center. In total 97 subjects, originating from 20 countries were screened between 2010 and 2020. They comprised 86 late-infantile, eight juvenile, and three adult-onset cases (two patients with Kufs disease type A, and one with teenage progressive myoclonic epilepsy). The male to female ratio was 1.06: 1.00. The age at referral was between six months and 33 years. The time from disease onset to referral ranged from less than 1 month to 8.3 years. The clinical phenotype consisted of a combination of symptoms, as reported before. We characterized a total of 45 distinct variants defining 45 distinct genotypes. Twenty-four were novel variants, some with distinct geographic associations. Remarkably, c.257A > G (p.H86R) was present in five out of 23 unrelated Egyptian individuals but in no patients from other countries. The most common genotype was homozygosity for the c.794_796del in-frame deletion. It was present in about one-third of CLN6 patients (28 unrelated cases, and 2 familial cases), all with late-infantile onset. Variants with a high likelihood of causing loss of CLN6 function were found in 21% of cases and made up 33% of all distinct variants. Forty-four percent of variants were classified as pathogenic or likely pathogenic. CONCLUSIONS: Our study significantly expands the number of published clinical cases and the mutational spectrum of disease-associated CLN6 variants, especially for the Middle Eastern and North African regions. We confirm previous observations regarding the most prevalent symptoms and recommend including CLN6 in the genetic diagnosis of patients presenting with early-onset abnormalities of the nervous system, musculoskeletal system, and eye.


Assuntos
Epilepsias Mioclônicas Progressivas , Lipofuscinoses Ceroides Neuronais , Adolescente , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética
7.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36006710

RESUMO

CBL-B is an E3 ubiquitin ligase that ubiquitinates proteins downstream of immune receptors to downregulate positive signaling cascades. Distinct homozygous mutations in CBLB were identified in 3 unrelated children with early-onset autoimmunity, one of whom also had chronic urticaria. Patient T cells exhibited hyperproliferation in response to anti-CD3 cross-linking. One of the mutations, p.R496X, abolished CBL-B expression, and a second mutation, p.C464W, resulted in preserved CBL-B expression. The third mutation, p.H285L in the SH2 domain of CBL-B, was expressed at half the normal level in the patient's cells. Mice homozygous for the CBL-B p.H257L mutation, which corresponds to the patient's p.H285L mutation, had T and B cell hyperproliferation in response to antigen receptor cross-linking. CblbH257L mice had increased percentages of T regulatory cells (Tregs) that had normal in vitro suppressive function. However, T effector cells from the patient with the p.H285L mutation and CblbH257L mice were resistant to suppression by WT Tregs. Bone marrow-derived mast cells from CblbH257L mice were hyperactivated after FcεRI cross-linking, and CblbH257L mice demonstrated exaggerated IgE-mediated passive anaphylaxis. This study establishes CBL-B deficiency as a cause of immune dysregulation.


Assuntos
Receptores de IgE , Ubiquitina-Proteína Ligases , Animais , Camundongos , Imunoglobulina E/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Humanos , Criança
8.
Eur J Hum Genet ; 29(1): 141-153, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860008

RESUMO

Despite clear technical superiority of genome sequencing (GS) over other diagnostic methods such as exome sequencing (ES), few studies are available regarding the advantages of its clinical application. We analyzed 1007 consecutive index cases for whom GS was performed in a diagnostic setting over a 2-year period. We reported pathogenic and likely pathogenic (P/LP) variants that explain the patients' phenotype in 212 of the 1007 cases (21.1%). In 245 additional cases (24.3%), a variant of unknown significance (VUS) related to the phenotype was reported. We especially investigated patients which had had ES with no genetic diagnosis (n = 358). For this group, GS diagnostic yield was 14.5% (52 patients with P/LP out of 358). GS should be especially indicated for ES-negative cases since up to 29.6% of them  could benefit from GS testing (14.5% with P/LP, n = 52 and 15.1% with VUS, n = 54). Genetic diagnoses in most of the ES-negative/GS-positive cases were determined by technical superiority of GS, i.e., access to noncoding regions and more uniform coverage. Importantly, we reported 79 noncoding variants, of which, 41 variants were classified as P/LP. Interpretation of noncoding variants remains challenging, and in many cases, complementary methods based on direct enzyme assessment, biomarker testing and RNA analysis are needed for variant classification and diagnosis. We present the largest cohort of patients with GS performed in a clinical setting to date. The results of this study should direct the decision for GS as standard second-line, or even first-line stand-alone test.


Assuntos
Sequenciamento do Exoma/normas , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/normas , Adolescente , Criança , Pré-Escolar , Feminino , Frequência do Gene , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Testes Genéticos/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Masculino , Diagnóstico Pré-Natal/normas , Diagnóstico Pré-Natal/estatística & dados numéricos , Sensibilidade e Especificidade , Sequenciamento do Exoma/estatística & dados numéricos
9.
Eur J Hum Genet ; 28(3): 367-372, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31822863

RESUMO

Intellectual disability (ID) is one of most frequent reasons for genetic consultation. The complex molecular anatomy of ID ranges from complete chromosomal imbalances to single nucleotide variant changes occurring de novo, with thousands of genes identified. This extreme genetic heterogeneity challenges the molecular diagnosis, which mostly requires a genomic approach. CXorf56 is largely uncharacterized and was recently proposed as a candidate ID gene based on findings in a single Dutch family. Here, we describe nine cases (six males and three females) from three unrelated families. Exome sequencing and combined database analyses, identified family-specific CXorf56 variants (NM_022101.3:c.498_503del, p.(Glu167_Glu168del) and c.303_304delCTinsACCC, p.(Phe101Leufs*20)) that segregated with the ID phenotype. These variants are presumably leading to loss-of-function, which is the proposed disease mechanism. Clinically, CXorf56-related disease is a slowly progressive neurological disorder. The phenotype is more severe in hemizygote males, but might also manifests in heterozygote females, which showed skewed X-inactivation patterns in blood. Male patients might present previously unreported neurological features such as epilepsy, abnormal gait, tremor, and clonus, which extends the clinical spectrum of the disorder. In conclusion, we confirm the causative role of variants in CXorf56 for an X-linked form of intellectual disability with additional neurological features. The gene should be considered for molecular diagnostics of patients with ID, specifically when family history is suggestive of X-linked inheritance. Further work is needed to understand the role of this gene in neurodevelopment and intellectual disability.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Adulto , Deficiências do Desenvolvimento/patologia , Feminino , Hemizigoto , Humanos , Deficiência Intelectual/patologia , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Inativação do Cromossomo X
10.
NPJ Genom Med ; 5: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083013

RESUMO

We implemented a collaborative diagnostic program in Lahore (Pakistan) aiming to establish the genetic diagnosis, and to asses diagnostic yield and clinical impact in patients with suspected genetic diseases. Local physicians ascertained pediatric patients who had no previous access to genetic testing. More than 1586 genetic tests were performed in 1019 individuals (349 index cases, 670 relatives). Most frequently performed tests were exome/genome sequencing (ES/GS, 284/78 index cases) and specific gene panels (55 index cases). In 61.3% of the patients (n = 214) a genetic diagnosis was established based on pathogenic and likely pathogenic variants. Diagnostic yield was higher in consanguineous families (60.1 vs. 39.5%). In 27 patients, genetic diagnosis relied on additional biochemical testing, allowing rapid assessment of the functional effect of the variants. Remarkably, the genetic diagnosis had a direct impact on clinical management. Most relevant consequences were therapy related such as initiation of the appropriated treatment in a timely manner in 51.9% of the patients (n = 111). Finally, we report 12 candidate genes among 66 cases with no genetic diagnosis. Importantly, three of these genes were validated as 'diagnostic' genes given the strong evidence supporting causality derived from our data repository (CAP2-dilated cardiomyopathy, ITFG2-intellectual disability and USP53-liver cholestasis). The high diagnostic yield, clinical impact, and research findings demonstrate the utility of genomic testing, especially when used as first-line genetic test. For patients with suspected genetic diseases from resource-limited regions, ES can be considered as the test of choice to achieve genetic diagnosis.

11.
Eur J Med Genet ; 62(12): 103603, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30572171

RESUMO

Currently accepted birth prevalence for osteochondrodysplasias (OCDs) is about 2 per 10,000 births. Our main goal is to estimate the prevalence of OCDs in Argentina and compare it with other surveillance systems. We examined 1,663,610 births among 160 hospitals of RENAC (Red Nacional de Anomalías Congénitas - National Network of Congenital Anomalies) between November 2009 and December 2016. Cases were detected and registered according to a pre-established protocol, ranked in three diagnostic evidence levels according to available clinical documentation, and categorized according to the 9th edition of the nosology and classification of genetic skeletal disorders. Within our dataset, the most frequent groups were Group-1 (FGFR3, chondrodysplasia) and Group-25 (Osteogenesis Imperfecta and decreased bone density). Birth prevalence per 10,000 for the main OCD types, were: Achondroplasia 0.47 (95% CI: 0.38-0.59), Thanatophoric Dysplasia 0.37 (95% CI: 0.29-0.48), and the Osteogenesis Imperfecta group 0.34 (95% CI: 0.26-0.44). For total OCD, birth prevalence was 2.20 per 10.000 births (95% CI: 1.98-2.44). RENAC prevalence of total OCDs was found to be lower than that reported by the Latin-American Study of Congenital Malformations (ECLAMC) and Utah Birth Defect Network but higher than EUROCAT. Our investigation is the first study of OCD prevalence in Argentina using data from every jurisdiction of the country.


Assuntos
Acondroplasia/epidemiologia , Osteogênese Imperfeita/epidemiologia , Displasia Tanatofórica/epidemiologia , Argentina , Coeficiente de Natalidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa