Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 13(5): 2972-2981, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33508050

RESUMO

Covalent functionalization is one of the most efficient ways to tune the properties of layered materials in a highly controlled manner. However, molecular chemisorption on semiconducting transition metal dichalcogenides remains a delicate task due to the inertness of their surface. Here we perform covalent modification of bulk and single layer molybdenum disulfide (MoS2) using chemical activation of diazonium salts. A high level of control over the grafting density and yield on MoS2 basal plane can be achieved by this approach. Using scanning probe microscopies and X-ray photoelectron spectroscopy we prove the covalent functionalization of MoS2.

2.
Nanophotonics ; 10(8): 2145-2156, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36406045

RESUMO

Lead halide perovskites have attracted tremendous attention in photovoltaics due to their impressive optoelectronic properties. However, the poor stability of perovskite-based devices remains a bottleneck for further commercial development. Two-dimensional perovskites have great potential in optoelectronic devices, as they are much more stable than their three-dimensional counterparts and rapidly catching up in performance. Herein, we demonstrate high-quality two-dimensional novel perovskite thin films with alternating cations in the interlayer space. This innovative perovskite provides highly stable semiconductor thin films for efficient near-infrared light-emitting diodes (LEDs). Highly efficient LEDs with tunable emission wavelengths from 680 to 770 nm along with excellent operational stability are demonstrated by varying the thickness of the interlayer spacer cation. Furthermore, the best-performing device exhibits an external quantum efficiency of 3.4% at a high current density (J) of 249 mA/cm2 and remains above 2.5% for a J up to 720 mA cm-2, leading to a high radiance of 77.5 W/Sr m2 when driven at 6 V. The same device also shows impressive operational stability, retaining almost 80% of its initial performance after operating at 20 mA/cm2 for 350 min. This work provides fundamental evidence that this novel alternating interlayer cation 2D perovskite can be a promising and stable photonic emitter.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa