RESUMO
BACKGROUND: Antidiabetic therapies are effective, but could indirectly modify the inflammatory response in the ocular microenvironment; therefore, a study was developed to evaluate the inflammatory cytokine profile in the vitreous humor of diabetic patients with retinopathy under treatment with antidiabetic drugs. METHODS: Observational, comparative, retrospective, cross-sectional study. Interleukins 1ß, 6, 8, 10, and tumor necrosis factor-alpha (TNFα) were evaluated in the vitreous humor obtained from patients with type 2 diabetes mellitus, proliferative diabetic retinopathy, and concomitant retinal detachment or vitreous hemorrhage, and who were already on antidiabetic treatment with insulin or metformin + glibenclamide. The quantification analysis of each cytokine was performed by the cytometric bead array (CBA) technique; medians and interquartile ranges were obtained, and the results were compared between groups using the Mann-Whitney U test, where a p-value < 0.05 was considered significant. RESULTS: Thirty-eight samples; quantification of TNFα concentrations was higher in the group of patients administered insulin, while interleukin-8 was lower; in the metformin + glibenclamide combination therapy group, it occurred inversely. In the stratified analysis, the highest concentrations of interleukin-8 and TNFα occurred in patients with vitreous hemorrhage; however, the only statistical difference existed in patients with retinal detachment, whose TNFα concentration in the combined therapy group was the lowest value found (53.50 (33.03-86.66), p = 0.03). Interleukins 1ß, 6, and 10 were not detected. CONCLUSION: Interleukin-8 and TNFα concentrations are opposite between treatment groups; this change is more accentuated in patients with proliferative diabetic retinopathy and vitreous hemorrhage, where the highest concentrations of both cytokines are found, although only TNFα have statistical difference.
Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hipoglicemiantes , Interleucina-8 , Fator de Necrose Tumoral alfa , Corpo Vítreo , Humanos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Masculino , Corpo Vítreo/metabolismo , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Fator de Necrose Tumoral alfa/metabolismo , Estudos Retrospectivos , Hipoglicemiantes/uso terapêutico , Idoso , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Interleucina-8/metabolismo , Insulina/uso terapêutico , Metformina/uso terapêutico , Glibureto/uso terapêutico , Quimioterapia CombinadaRESUMO
In this work, we performed anti-proliferative assays for the compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on breast cancer (BC) cells (MCF-7, SKBR3, and triple-negative BC (TNBC) MDA-MB-231 cells) to explore its pharmacological mechanism regarding the type of cell death associated with G protein-coupled estrogen receptor (GPER) expression. The results show that HO-AAVPA induces cell apoptosis at 5 h or 48 h in either estrogen-dependent (MCF-7) or -independent BC cells (SKBR3 and MDA-MB-231). At 5 h, the apoptosis rate for MCF-7 cells was 68.4% and that for MDA-MB-231 cells was 56.1%; at 48 h, that for SKBR3 was 61.6%, that for MCF-7 cells was 54.9%, and that for MDA-MB-231 (TNBC) was 43.1%. HO-AAVPA increased the S phase in MCF-7 cells and reduced the G2/M phase in MCF-7 and MDA-MB-231 cells. GPER expression decreased more than VPA in the presence of HO-AAVPA. In conclusion, the effects of HO-AAVPA on cell apoptosis could be modulated by epigenetic effects through a decrease in GPER expression.
Assuntos
Apoptose , Neoplasias da Mama , Pontos de Checagem do Ciclo Celular , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Apoptose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Amidas/farmacologia , Amidas/químicaRESUMO
The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1ß, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.
Assuntos
Brucella abortus , Brucelose , Humanos , Animais , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Mastócitos , Fator de Necrose Tumoral alfa , Interleucina-6RESUMO
Colonization of epithelium by microorganisms leads to inflammatory responses. In some cases an anti-apoptotic response involving the cellular inhibitor of apoptosis protein-2 (cIAP-2) also occurs. Although strong expression of cIAP-2 has been observed in lesional skin from psoriatic patients and in HaCaT keratinocytes treated with peptidoglycan (PGN) from Staphylococcus aureus, anti-apoptotic responses induced in the skin by cIAP-2 have seldom been studied. In this study, the effect of PGN on TNF-α-induced apoptotic HaCaT keratinocytes was assessed. Morphological analysis, quantification of cells with DNA fragmentation and active caspase-3 detection was performed to assess apoptotic cell death. Greater LL-37 and cIAP-2 production was found in keratinocytes stimulated with PGN than in non-treated cells (P < 0.05). In comparison with cells treated with TNF-α only, a significant reduction in apoptotic cell death was observed when HaCaT were pretreated with PGN before inducing apoptosis with TNF-α (P < 0.05). In addition, an inhibitor of cIAP-2 activity (LCL161) stopped the PGN effect. These findings show that PGN from S. aureus has an anti-apoptotic effect in keratinocytes mediated by cIAP-2 production, suggesting that this anti-apoptotic activity could favor proliferation of keratinocytes in psoriasis.
Assuntos
Apoptose , Proteínas Inibidoras de Apoptose/biossíntese , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Peptidoglicano/metabolismo , Staphylococcus aureus/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Interleucina-8/genética , Queratinócitos/efeitos dos fármacos , Peptidoglicano/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , CatelicidinasRESUMO
Obesity is associated with a low-grade chronic inflammatory process characterized by higher circulating TNFα levels, thus contributing to insulin resistance. This study evaluated the effect of silybin, the main bioactive component of silymarin, which has anti-inflammatory properties, on TNFα levels and its impact on glucose uptake in the adipocyte cell line 3T3-L1 challenged with two different inflammatory stimuli, TNFα or lipopolysaccharide (LPS). Silybin's pre-treatment effect was evaluated in adipocytes pre-incubated with silybin (30 or 80 µM) before challenging with the inflammatory stimuli (TNFα or LPS). For the post-treatment effect, the adipocytes were first challenged with the inflammatory stimuli and then post-treated with silybin. After treatments, TNFα production, glucose uptake, and GLUT4 protein expression were determined. Both inflammatory stimuli increased TNFα secretion, diminished GLUT4 expression, and significantly decreased glucose uptake. Silybin 30 µM only reduced TNFα secretion after the LPS challenge. Silybin 80 µM as post-treatment or pre-treatment decreased TNFα levels, improving glucose uptake. However, glucose uptake enhancement induced by silybin did not depend on GLUT4 protein expression. These results show that silybin importantly reduced TNFα levels and upregulates glucose uptake, independently of GLUT4 protein expression.
Assuntos
Células 3T3-L1 , Adipócitos , Glucose , Lipopolissacarídeos , Silibina , Fator de Necrose Tumoral alfa , Animais , Silibina/farmacologia , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Glucose/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Silimarina/farmacologiaRESUMO
Asthma is one of the most common chronic non-communicable diseases worldwide, characterized by variable airflow limitation secondary to airway narrowing, airway wall thickening, and increased mucus resulting from chronic inflammation and airway remodeling. Current epidemiological studies reported that hypovitaminosis D is frequent in patients with asthma and is associated with worsening the disease and that supplementation with vitamin D3 improves asthma symptoms. However, despite several advances in the field, the molecular mechanisms of asthma have yet to be comprehensively understood. MicroRNAs play an important role in controlling several biological processes and their deregulation is implicated in diverse diseases, including asthma. Evidence supports that the dysregulation of miR-21, miR-27b, miR-145, miR-146a, and miR-155 leads to disbalance of Th1/Th2 cells, inflammation, and airway remodeling, resulting in exacerbation of asthma. This review addresses how these molecular mechanisms explain the development of asthma and its exacerbation and how vitamin D3 may modulate these microRNAs to improve asthma symptoms.
Assuntos
Asma , MicroRNAs , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , MicroRNAs/genética , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Asma/genética , Asma/complicações , Pulmão , Inflamação/complicações , Suplementos NutricionaisRESUMO
The contribution of the cellular immune response to the severity of coronavirus disease 2019 (COVID-19) is still uncertain because most evidence comes from patients receiving multiple drugs able to change immune function. Herein, we conducted a prospective cohort study and obtained blood samples from 128 unvaccinated healthy volunteers to examine the in vitro response pattern of CD4+ and CD8+ T cells and monocyte subsets to polyclonal stimuli, including anti-CD3, anti-CD28, poly I:C, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) recombinant spike S1 protein, and lipopolysaccharide. Then, we started a six-month follow-up and registered 12 participants who got SARS-CoV-2 infection, from whom we retrospectively analyzed the basal immune response pattern of T cells and monocytes. Of the 12 participants infected, six participants developed mild COVID-19 with self-limiting symptoms such as fever, headache, and anosmia. Conversely, six other participants developed severe COVID-19 with pneumonia, respiratory distress, and hypoxia. Two severe COVID-19 cases required invasive mechanical ventilation. There were no differences between mild and severe cases for demographic, clinical, and biochemical baseline characteristics. In response to polyclonal stimuli, basal production of interleukin-2 (IL-2) and interferon (IFN-) gamma significantly decreased, and the programmed cell death protein 1 (PD-1) increased in CD4+ and CD8+ T cells from participants who posteriorly developed severe COVID-19 compared to mild cases. Likewise, CD14++CD16- classical and CD14+CD16+ non-classical monocytes lost their ability to produce IFN-alpha in response to polyclonal stimuli in participants who developed severe COVID-19 compared to mild cases. Of note, neither the total immunoglobulin G serum titers against the virus nor their neutralizing ability differed between mild and severe cases after a month of clinical recovery. In conclusion, using in vitro polyclonal stimuli, we found a basal immune response pattern associated with a predisposition to developing severe COVID-19, where high PD-1 expression and low IL-2 and IFN-gamma production in CD4+ and CD8+ T cells, and poor IFN-alpha expression in classical and non-classical monocytes are linked to disease worsening. Since antibody titers did not differ between mild and severe cases, these findings suggest cellular immunity may play a more crucial role than humoral immunity in preventing COVID-19 progression.
Assuntos
COVID-19 , Humanos , Imunidade Celular , Interleucina-2 , Monócitos , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Linfócitos TRESUMO
Background: Leishmaniases are a group of vector-borne zoonotic diseases of public health relevance within the tropical and subtropical regions of the world. The state of Yucatan is a vulnerable and receptive area to localized cutaneous leishmaniasis (LCL) due to its proximity to the high-transmission endemic states of Campeche and Quintana Roo. Autochthonous cases of LCL caused by Leishmania (Leishmania) mexicana have been documented in the state, showing a geographical expansion of the disease. Materials and Methods: Using CO2-supplemented Centers for Disease Control and Prevention light traps and Shannon traps, we captured anthropophilic sandflies in the surroundings of a locality with recent records of autochthonous cases of LCL. Sandflies carrying Leishmania DNA were evidenced using PCR. Results: A total of 140 Phlebotominae (Diptera: Psychodidae) females of four species were captured: Lutzomyia (Tricholateralis) cruciata (Coquillett), Psathyromyia (Psathyromyia) shannoni (Dyar), Lutzomyia (Lutzomyia) longipalpis (Lutz and Neiva), and Dampfomyia (Coromyia) deleoni (Fairchild and Hertig). Molecular results showed that 6.1% (95% confidence interval [CI] = 2.3-12.9%) of Lu. cruciata and 43.8% (95% CI = 19.8-70.1%) of Pa. shannoni showed evidence of carrying L. (L.) mexicana DNA. Conclusion: We provide evidence of anthropophilic sandflies carrying L. mexicana DNA in a municipality with recorded autochthonous cases of LCL caused by this parasite species in the state of Yucatan, suggesting the emergence of new focus of LCL in Mexico.
Assuntos
Leishmania mexicana , Psychodidae , Animais , Leishmania mexicana/classificação , Leishmania mexicana/genética , Leishmania mexicana/isolamento & purificação , México , Psychodidae/parasitologiaRESUMO
BACKGROUND: It has been observed that subjects with comorbidities related to metabolic syndrome (MetS) as hypertension, obesity, cardiovascular disease (CVD), and diabetes mellitus (DM2) show severe cases and a higher mortality by COVID-19. To date, there is little information available on the impact of the interaction between these comorbidities in the risk of death by COVID-19. AIM OF THE STUDY: To evaluate the impact of the combinations of MetS components in overall survival (OS) and risk of death among COVID-19 patients. METHODS: Using public data of the Ministry of Health, suspected, and confirmed COVID-19 cases from February 25-June 6, 2020 was analyzed. Mortality odds ratio (OR) was calculated with a univariate analysis (95% CI) and attributable risk. Interactions between components and survival curves were analyzed and a multivariate logistics regression analysis was conducted. RESULTS: The analysis included 528,651 cases out of which 202,951 were confirmed for COVID-19. Probabilities of OS among confirmed patients were 0.93, 0.89, 0.87, 0.86, and 0.83 while the OR of multivariate analysis was 1.83 (1.77-1.89), 2.58 (2.48-2.69), 2.83 (2.66-3.01), and 3.36 (2.83-3.99) for zero, one, two, three, and four MetS components, respectively. The combination with the highest risk was DM2â¯+â¯hypertension at 2.22 (2.15-2.28), and the attributable risk for any component was 9.35% (9.21-9.49). Only the combination obesityâ¯+â¯CVD showed no significant interaction. CONCLUSION: The presence of one MetS component doubles the risk of death by COVID-19, which was higher among patients with DM2â¯+â¯hypertension. Only obesity and CVD do not interact significantly.
Assuntos
COVID-19 , Diabetes Mellitus , Hipertensão , Síndrome Metabólica , Comorbidade , Diabetes Mellitus/epidemiologia , Humanos , Hipertensão/complicações , Hipertensão/epidemiologia , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Fatores de Risco , SARS-CoV-2RESUMO
Hematopoietic stem cells transplantation (HSCT) is the leading curative therapy for a variety of hematological and hereditary diseases; however, graft versus host disease (GVHD), an immunologic phenomenon that is favored by Th1 cytokines and cytotoxic cells from donors, is present frequently and is one of the most important causes of transplant related mortality. Peripheral blood HSCT is the preferred source of stem cells in almost 100% of the cases of autologous HSCT and in 70% of allogeneic transplants. The best mobilizing agent to get the stem cells out from the bone marrow is the Granulocyte-Colony Stimulating Factor (G-CSF). In this work, our main objective was to study a possible correlation between the graft cell dose and the patient's clinical outcome. We evaluated the immunologic changes produced by G-CSF in the lymphocyte and cytokine profiles in allogeneic HSC donors. HSC from twelve donors were mobilized with G-CSF at 16 microg/kg/day, for 5 days. Basal Peripheral Blood (BPB), Mobilized Peripheral Blood (MPB), and aphaeresis mononuclear cells (G-MNC) samples were taken from all donors. Using flow cytometry, we quantified CD19(+), CD3(+), CD3(+)CD4(+), CD3(+)CD8(+), NK, NKT, DC1, and DC2 cells. Cytokines were determined by ELISA in culture supernatants. CD19(+) (p = 0.001), DC1 (p < 0.002) and DC2 (p < 0.001) cells were increased in MPB with respect to BPB. An increase in Th2 cytokines such as (IL-4) and a decrease in Th1 cytokines (IFNgamma, IL-2) were also found in MPB samples. In conclusion, Th1 and Th2 cytokines are relevant in predicting the clinical outcome after allogeneic peripheral blood HSCT.
Assuntos
Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas/métodos , Interferon gama/análise , Interleucina-4/análise , Subpopulações de Linfócitos T/citologia , Adolescente , Adulto , Remoção de Componentes Sanguíneos , Contagem de Células , Criança , Citocinas/análise , Citocinas/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Transplante de Células-Tronco de Sangue Periférico/métodos , Células Th1/metabolismo , Células Th2/metabolismo , Resultado do Tratamento , Adulto JovemRESUMO
Obesity is a serious public health problem worldwide and has been associated in epidemiological studies with a unique type of non-atopic asthma, although the causal association of asthma and obesity has certain criteria, such as the strength of association, consistency, specificity, temporality, biological gradient, coherence, analogy and experimentation; nevertheless, the biological plausibility of this association remains uncertain. Various mechanisms have been postulated, such as immunological, hormonal, mechanical, environmental, genetic and epigenetic mechanisms. Our hypothesis favours immunological mechanisms because some cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-17A, are responsible for orchestrating low-grade systemic inflammation associated with obesity; however, these cytokines are regulated by epigenetic mechanisms, such as gene promoter methylation.
Assuntos
Asma/etiologia , Metilação de DNA , Interleucina-17/genética , Modelos Imunológicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Obesidade/complicações , Regiões Promotoras Genéticas , Células Th17/metabolismo , Fator de Necrose Tumoral alfa/genética , Tecido Adiposo/metabolismo , Adolescente , Adulto , Animais , Asma/genética , Asma/imunologia , Causalidade , Criança , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-23/fisiologia , Macrófagos/metabolismo , Masculino , Metanálise como Assunto , Camundongos , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Obesidade/imunologia , Fator de Necrose Tumoral alfa/fisiologiaRESUMO
Peptide epitopes have been widely used to develop synthetic vaccines and immunotherapies. However, peptide epitopes may exhibit poor absorption or immunogenicity due to their low molecular weights. Conversely, fourth-generation polyamidoamine (G4-PAMAM) dendrimers are nonimmunogenic and relatively nontoxic synthetic nanoparticles that have been used as adjuvants and nanocarriers of small peptides and to improve nasal absorption. Based on this information, we hypothesized that the combination of intranasal immunization and G4-PAMAM dendrimers would be useful for enhancing the antibody responses of HIV-1 gp120 peptide epitopes. Therefore, we first used structural data, peptide epitope predictors and docking and MD simulations on MHC-II to identify two peptide epitopes on the CD4 binding site of HIV-1 gp120. The formation of G4-PAMAM-peptide complexes was evaluated in silico (molecular docking studies using different G4-PAMAM conformations retrieved from MD simulations as well as the MMGBSA approach) and validated experimentally (electrophoresis, 1H NMR and cryo-TEM). Next, the G4-PAMAM dendrimer-peptide complexes were administered intranasally to groups of female BALB/cJ mice. The results showed that both peptides were immunogenic at the systemic and mucosal levels (nasal and vaginal), and G4-PAMAM dendrimer-peptide complexes improved IgG and IgA responses in serum and nasal washes. Thus, G4-PAMAM dendrimers have potential for use as adjuvants and nanocarriers of peptides.
Assuntos
Simulação por Computador , Dendrímeros/química , Proteína gp120 do Envelope de HIV/química , HIV-1/química , HIV-1/imunologia , Modelos Moleculares , Nylons/química , Peptídeos/química , Peptídeos/imunologia , Animais , Feminino , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/genéticaRESUMO
CD8+ T cells that secrete proinflammatory cytokines play a central role in exacerbation of inflammation; however, a new subpopulation of CD8 regulatory T cells has recently been characterized. This study analyzes the prominent role of these different subpopulations in the development of graft-versus-host disease (GVHD). Samples from 8 healthy donors mobilized with Filgrastim® (G-CSF) and 18 patients who underwent allogeneic hematopoietic stem cell transplantation (HSCT) were evaluated by flow cytometry. Mobilization induced an increase in Tc1 (p < 0.01), Th1 (p < 0.001), Tc17 (p < 0.05), and CD8+IL-10+ cells (p < 0.05), showing that G-CSF induces both pro- and anti-inflammatory profiles. Donor-patient correlation revealed a trend (p = 0.06) toward the development of GVHD in patients who receive a high percentage of Tc1 cells. Patients with acute GVHD (aGVHD), either active or controlled, and patients without GVHD were evaluated; patients with active aGVHD had a higher percentage of Tc1 (p < 0.01) and Tc17 (p < 0.05) cells, as opposed to patients without GVHD in whom a higher percentage of CD8 Treg cells (p < 0.01) was found. These findings indicate that the increase in Tc1 and Tc17 cells is associated with GVHD development, while regulatory CD8 T cells might have a protective role in this disease. These tests can be used to monitor and control GVHD.
Assuntos
Doença Enxerto-Hospedeiro/imunologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Transplante de Células-Tronco Hematopoéticas , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Feminino , Filgrastim/uso terapêutico , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Mast cells are crucial elements of the innate immune response. They reside in tissues that are commonly exposed to the external environment, such as the skin and mucosae, where they can rapidly detect the presence of pathogens and mount a potent inflammatory response that recruits other cellular effectors of the immune response. The contribution of mast cells to the immune response to viruses, bacteria, protozoa and multicellular parasites is well established, but there is scarce information about the role of these cells in fungal infections. In this study, we analyzed if mast cells are activated by Candida albicans and if the C-type lectin receptor Dectin-1 is involved in its recognition. We found that both yeasts and hyphae of C. albicans-induced mast cell degranulation and production of TNF-α, IL-6, IL-10, CCL3 and CCL4, while only yeasts were able to induce IL-1ß. Mast cells also produced ROS after stimulation with both dimorphic phases of C. albicans. When mast cells were activated with yeasts and hyphae, they showed decreased expression of IκBα and increased presence of phosphorylated Syk. Blockade of the receptor Dectin-1, but not Toll-like receptor 2, decreased TNF-α production by mast cell in response to C. albicans. These results indicate that mast cells are capable of sensing the two phases of C. albicans, and suggest that mast cells participate as an early inductor of inflammation during the early innate immune response to this fungus.
Assuntos
Candida albicans/imunologia , Degranulação Celular/imunologia , Inflamação/imunologia , Lectinas Tipo C/imunologia , Mastócitos/imunologia , Animais , Células Cultivadas , Quimiocina CCL3/biossíntese , Quimiocina CCL4/biossíntese , Hifas/imunologia , Quinase I-kappa B/metabolismo , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Fosforilação/imunologia , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk , Fator de Necrose Tumoral alfa/biossíntese , Leveduras/imunologiaRESUMO
Dialyzable leukocyte extracts (DLE) transfer specific cell-mediated immune responses from sensitized donors to non-immune recipients. In addition, DLE have several immunomodulatory effects and are used for the treatment of several infectious and non-infectious diseases. Previous studies showed that human DLE obtained from virus-infected leukocytes and bovine DLE decrease the production of the pro-inflammatory cytokine TNF-alpha in response to bacterial lipopolysaccharide, in vitro and in vivo. In the present work, we inquire as to whether DLE from uninfected human leukocytes have the ability to regulate cytokine production in peripheral blood mononuclear cells (PBMC) in vitro. We observed that PBMC from healthy individuals were able to produce TNF-alpha, IL-12 and IL-10 after stimulation with DLE. Moreover, we identified monocytes as the main cell population that produced TNF-alpha after DLE stimulation. Interestingly, we found that DLE contain unidentified ligands that activate Toll-like receptor (TLR)-2. Finally, we observed that DLE directly activated monocytes through TLR-2. These results reveal a new biological activity of DLE, and suggest that part of the immunomodulatory properties of DLE could be attributed to TLR-2 activation on monocytes and to the induction of a pro-inflammatory environment that is crucial for control of infectious diseases.
Assuntos
Extratos Celulares/farmacologia , Leucócitos/química , Monócitos/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Animais , Extratos Celulares/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Monócitos/metabolismo , Receptor 2 Toll-Like/genéticaRESUMO
Brucella abortus is an alpha-2 proteobacteria with a type IV secretion system (T4SS) known as virB, which is necessary to gain virulence by building up a replicative vacuole associated with the endoplasmic reticulum of the host cell. A virB T4SS mutant of the B. abortus 2308 strain and its wild-type strain were grown in acid medium in order to obtain and analyze their proteomes, looking for putative proteins that may serve as T4SS substrates and those that may be subjected to T4SS regulation. A total of 47 overexpressed and 22 underexpressed proteins from the virB T4SS mutant strain were selected and sequenced. Some of the 69 analyzed proteins have not been described before either as over or under-expressed in relation to a virB T4SS mutation, whereas some of them have been already described by other groups as potentially important secretory proteins in other Brucella species. An important number of the proteins identified are outer membrane and periplasmic space protein, which makes them become particularly important new T4SS-related candidate proteins.
Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Sistemas de Secreção Bacterianos , Brucella abortus/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Proteínas Periplásmicas/biossíntese , Proteoma/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Brucella abortus/genética , Proteínas Periplásmicas/genética , Proteoma/genéticaRESUMO
A 57-year-old male presented with dermatosis of the dorsum of the foot consisting of tumefaction, deformity and sinus tract formation. The direct examination of exudates as well as the biopsy tissue, demonstrated the presence of black granules. A dematiaceous fungus was isolated from the lesions and was identified by ribosomal DNA sequencing as Cladophialophora bantiana. This is the second report of this fungus as an etiologic agent of eumycetoma in humans. Clinical and mycologic cure was achieved after 20 months of treatment with itraconazole at a starting dose of 300 mg/day that was tapered during the course of therapy. The patient's isolate had an itraconazole MIC of 0.012 microg/ml.