Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Appl Microbiol Biotechnol ; 107(5-6): 1537-1549, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719435

RESUMO

The aim of this work was to develop a comparative study between Bacillus paralicheniformis TB197 and B. subtilis ATCC 21332 strains in terms of growth, cyclic lipopeptide production, nematicidal activity, and active lipopeptide characteristics. Crude lipopeptide extracts (CLEs) from their fermentation broths were obtained, and their nematicidal activity (NA) was estimated as the mean lethal dose (LD50), employing Caenorhabditis elegans. Using a bioguided approach, CLE components were fractionated by semipreparative thin layer chromatography, and active lipopeptides were characterized by mass spectrometry. Both strains produced similar concentrations of CLEs (p ≥ 0.05) (0.99 ± 0.11 and 1.14 ± 0.15 mg/mL by TB197 and ATCC 21332, respectively). The estimated LD50 values of CLEs from the TB197 and ATCC 21332 strains were 3.88 and 8.15 mg/mL, respectively, showing that the NA of the TB197 strain CLE was 2.1-fold higher (p ≤ 0.05). Mass spectrometry revealed that strain TB197 synthesizes several families of lipopeptides, namely, fengycin A (C14-C17), fengycin B (C16-C17), surfactin (C15-C17), and lichenysin (C12, C13, C14, and C16), from which fengycins and lichenysins possess the highest NA (100 and 60% mortality in C. elegans larvae, respectively), while the ATCC 21332 strain produces mainly surfactin (C13-C17) (NA 63% mortality). The main differences found in this study were that the TB197 strain has a higher tolerance to inhibition by the product, and the lipopeptides they synthesize have a higher nematicidal activity due to the diversity of families compared to ATCC 21332. Likewise, it was shown that more polar lipopeptides (fengycins) are more effective at causing mortality in C. elegans larvae. KEY POINTS: • The nematicidal activity of lipopeptides from TB197 is higher than from ATCC 21332 • TB197 produces surfactin, lichenysin, and fengycin, while ATCC 21332 mainly produces surfactin • The most polar lipopeptides (fengycins) cause more mortality in C. elegans L2.


Assuntos
Bacillus subtilis , Bacillus , Animais , Caenorhabditis elegans , Bacillus/química , Lipopeptídeos , Peptídeos Cíclicos/química
2.
Parasitol Res ; 123(1): 60, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112844

RESUMO

Apoptosis is a finely programmed process of cell death in which cells silently dismantle and actively participate in several operations such as immune response, differentiation, and cell growth. It can be initiated by three main pathways: the extrinsic, the perforin granzyme, and the intrinsic that culminate in the activation of several proteins in charge of tearing down the cell. On the other hand, apoptosis represents an ordeal for pathogens that live inside cells and maintain a strong dependency with them; thus, they have evolved multiple strategies to manipulate host cell apoptosis on their behalf. It has been widely documented that diverse intracellular bacteria, fungi, and parasites can interfere with most steps of the host cell apoptotic machinery to inhibit or induce apoptosis. Indeed, the inhibition of apoptosis is considered a virulence property shared by many intracellular pathogens to ensure productive replication. Some pathogens intervene at an early stage by interfering with the sensing of extracellular signals or transduction pathways. Others sense cellular stress or target the apoptosis regulator proteins of the Bcl-2 family or caspases. In many cases, the exact molecular mechanisms leading to the interference with the host cell apoptotic cascade are still unknown. However, intense research has been conducted to elucidate the strategies employed by intracellular pathogens to modulate host cell death. In this review, we summarize the main routes of activation of apoptosis and present several processes used by different bacteria, fungi, and parasites to modulate the apoptosis of their host cells.


Assuntos
Apoptose , Parasitos , Animais , Apoptose/fisiologia , Caspases/metabolismo , Morte Celular , Parasitos/metabolismo , Fungos/metabolismo
3.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35781918

RESUMO

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Assuntos
Hidrolases de Éster Carboxílico , Engenharia de Proteínas , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Biotecnologia , Catálise , Biocatálise , Enzimas/metabolismo
4.
Parasite Immunol ; 44(7): e12917, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340042

RESUMO

The intracellular parasite Leishmania mexicana inhibits camptothecin (CPT)-induced apoptosis of monocyte-derived dendritic cells (moDC) through the down-regulation of p38 and JNK phosphorylation, while the kinase Akt is maintained active for 24 h. In addition, the infection of moDC with L. mexicana promastigotes increases the protein presence of the antiapoptotic protein Bcl-xL. In the present work, we aimed to investigate the role of Akt in the inhibition of apoptosis of moDC by L. mexicana and in the modulation of the expression of the antiapoptotic proteins Bcl-2, Mcl-1 and Bcl-xL. moDC were infected with L. mexicana metacyclic promastigotes and treated with CPT, an Akt inhibitor, or both and the mitochondrial outer membrane permeabilization (MOMP) and protein presence of active caspase 3, Bcl-2, Mcl-1 and Bcl-xL were evaluated. Our results show that the specific inhibition of Akt reverts the apoptosis protective effect exerted by L. mexicana on moDC reflected by a reduction in MOMP, caspase 3 activation, and upregulation of Bcl-xL. Interestingly, we also found that the infection of moDC with L. mexicana promastigotes induces a decrease in Bcl-2 along with an isoform change of Mcl-1, this independently to Akt activity. We demonstrated that Akt is deeply involved in the inhibition of apoptosis of moDC by L. mexicana.


Assuntos
Leishmania mexicana , Apoptose , Proteínas Reguladoras de Apoptose , Camptotecina/farmacologia , Caspase 3 , Células Dendríticas/parasitologia , Leishmania mexicana/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteína bcl-X/metabolismo
5.
Parasitol Res ; 117(4): 1225-1235, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29476339

RESUMO

Dendritic cells (DCs) are one of the principal host cells of the obligate intracellular parasite Leishmania that can survive and reproduce within cells due to the ability to regulate different cellular events, including apoptosis. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously reported that Leishmania mexicana promastigotes and amastigotes inhibit camptothecin-induced apoptosis of monocyte-derived dendritic cells (moDCs) through the downregulation of p38 and JNK phosphorylation. The upregulation of glutathione (GSH), the most important regulator of reactive oxygen species (ROS) concentration, has proven to protect cells from apoptosis through the inhibition of JNK1. Another mechanism employed by cells for the protection of apoptosis is the expression of anti-apoptotic proteins of the Bcl-2 family. The aim of this study was to determine if GSH, ROS, and Bcl-xL participate in the inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes. GSH quantification assays showed that camptothecin and BSO (an inhibitor of glutathione synthesis) strongly decreased intracellular GSH concentration in moDC, while infection with L. mexicana promastigotes had no effect in the level of GSH. On the other hand, infection with L. mexicana promastigotes of BSO- and camptothecin-treated moDC diminished the concentration of ROS and induced the expression of the anti-apoptotic protein Bcl-xL. Our findings suggest that inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes is preferentially regulated by the expression of anti-apoptotic proteins of the Bcl-2 family rather than by the redox status of the cell.


Assuntos
Apoptose/fisiologia , Células Dendríticas/fisiologia , Células Dendríticas/parasitologia , Glutationa/metabolismo , Leishmania mexicana/imunologia , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/metabolismo , Animais , Butionina Sulfoximina/farmacologia , Camptotecina/farmacologia , Células Cultivadas , Regulação para Baixo , Humanos , Fosforilação
6.
Exp Parasitol ; 163: 57-67, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26777406

RESUMO

Dendritic cells (DC) are one of the principal host cells of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously shown that the infection of monocyte-derived dendritic cells (moDC) with Leishmania mexicana inhibits campthotecin-induced apoptosis. Nevertheless, the mechanisms involved in the inhibition of apoptosis of dendritic cells by Leishmania have not been established. Mitogen-activated protein kinases (MAPK) are key participants in the process of apoptosis and different species of Leishmania have been shown to regulate these kinases. In the present study, we analyzed the effect of L. mexicana promastigotes in the activation of JNK and p38 MAP kinase and their participation in the inhibition of apoptosis. The infection of moDC with L. mexicana promastigotes diminished significantly the phosphorylation of the MAP kinases JNK and p38. The inhibition of both kinases diminished DNA fragmentation, but in a major extent was the reduction of DNA fragmentation when JNK was inhibited. The capacity of L. mexicana promastigotes to diminish MAP kinases activation is probably one of the strategies employed to delay apoptosis induction in the infected moDC and may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.


Assuntos
Apoptose/fisiologia , Células Dendríticas/parasitologia , Regulação para Baixo , Leishmania mexicana/fisiologia , MAP Quinase Quinase 4/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação
7.
Trop Med Infect Dis ; 9(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38787051

RESUMO

Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through the secretion of cytokines. Several studies have demonstrated that Leishmania inhibits DC maturation. Nevertheless, when cells are subjected to a second stimulus such as LPS/IFN-γ, they manage to mature. In the maturation process of DC, several signaling pathways have been implicated, importantly MAPK. On the other hand, Akt is a signaling pathway deeply involved in cell survival. Some Leishmania species have shown to activate MAPK and Akt in different cells. The aim of this work was to investigate the role of ERK and Akt in the maturation of monocyte-derived DC (moDC) infected with L. mexicana. moDC were infected with L. mexicana metacyclic promastigotes, and the phosphorylation of ERK and Akt, the expression of MHCII and CD86 and IL-12 transcript, and secretion were determined in the presence or absence of an Akt inhibitor. We showed that L. mexicana induces a sustained Akt and ERK phosphorylation, while the Akt inhibitor inhibits it. Moreover, the infection of moDC downregulates CD86 expression but not MHCII, and the Akt inhibitor reestablishes CD86 expression and 12p40 production. Thus, L. mexicana can modulate DC maturation though Akt signaling.

8.
ChemMedChem ; : e202400241, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136604

RESUMO

A series of novel 4-acetyl-1,3,4-oxadiazole derivatives was designed and synthesized for their biological evaluation in vitro against Trypanosoma cruzi and Leishmania mexicana. Additionally, compounds were evaluated by molecular docking on the cruzain of T. cruzi (TcCz) and the cysteine protease B (CPB) of L. mexicana (LmCPB) to know their potential mechanism of binding. Compound OX-12 had better trypanocidal activity against NINOA (IC50= 10.5 µM) and A1 (IC50= 21.7 µM) T. cruzi strains that reference drug benznidazole (IC50= 30.3 µM and 39.8 µM, respectively). Compound OX-2 had the best biological activity against L. mexicana in M379 (IC50= 11.9 µM) and FCQEPS (IC50= 34.0 µM) strains that the reference drug glucantime (IC50 ˃120 µM). All the compounds showed important interactions with residues on the active site of TcCz (Gly66, Trp26, Leu67, and Ala138) and LmCPB (Gly67, Asn62, Leu68, and Ala140). Finally, the molecular dynamics simulations of the compound OX-12 shown moderate stability from 40 to 115 ns with an RMSD value of 6.5 Å. Meanwhile, compound OX-2 showed a minor stability in complex with CPB from 25 to 200 ns of simulation (RMSD <9 Å). These results encourage to develop more potent and efficient trypanocidal and leishmanicidal agents using the 1,3,4-oxadiazole scaffold.

9.
Microorganisms ; 10(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35630427

RESUMO

Halophilic microorganisms are potentially capable as platforms to produce low-cost biosurfactants. However, the robustness of bioprocesses is still a challenge and, therefore, it is essential to understand the effects of microbiological culture conditions through bioreactor engineering. Based on a design of experiments (DOE) and a response surface methodology (RSM) tailored and taken from the literature, the present work focuses on the evaluation of a composite central design (CCD) under batch cultures in stirred-tank bioreactors with the halophilic bacteria Salibacterium sp. 4CTb in order to determine the operative conditions that favor mass transfer and optimize the production of a lipopeptide. The results obtained showed profiles highlighting the most favorable culture conditions, which lead to an emulsification index (E24%) higher than 70%. Moreover, through the behavior of dissolved oxygen (DO), it was possible to experimentally evaluate the higher volumetric coefficient of mass transfer in the presence of lipopeptide (kLa = 31 1/h) as a key criterion for the synthesis of the biosurfactant on further cell expansion.

10.
Appl Biochem Biotechnol ; 192(2): 494-516, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399842

RESUMO

Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and ß-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 µg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into ß-oxidative pathway and/or vanillin oxidation to produce vanillic acid.


Assuntos
Amycolatopsis/metabolismo , Ácidos Cumáricos/metabolismo , Trifosfato de Adenosina/metabolismo , Amycolatopsis/citologia , Amycolatopsis/crescimento & desenvolvimento , Biotecnologia , Biotransformação , Técnicas de Cultura , Metabolismo Energético , Imersão , Espaço Intracelular/metabolismo , Cinética , Oxirredução
11.
J Biotechnol ; 316: 6-16, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32305629

RESUMO

Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6 mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5 mg of BSA and 15 mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60 °C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30 °C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50 mM, reached 95 % conversion after 24 h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Enzimas Imobilizadas/metabolismo , Biocatálise , Butiratos/metabolismo , Hidrolases de Éster Carboxílico/química , Enzimas Imobilizadas/química , Glutaral/química , Metacrilatos/química , Polímeros/química , Soroalbumina Bovina/química , Dióxido de Silício/química
12.
Methods Mol Biol ; 1835: 39-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109645

RESUMO

Carbohydrate esterases are a group of enzymes which release acyl or alkyl groups attached by ester linkage to carbohydrates. The CAZy database, which classifies enzymes that assemble, modify, and break down carbohydrates and glycoconjugates, classifies all carbohydrate esterases into 16 families. This chapter is an overview of the research for nearly 50 years around the main groups of carbohydrate esterases dealing with the degradation of polysaccharides, their main biochemical and molecular traits, as well as its application for the synthesis of high added value esters.


Assuntos
Metabolismo dos Carboidratos , Esterases/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Quitina/química , Quitina/metabolismo , Ácido Clorogênico/metabolismo , Esterases/química , Ésteres/metabolismo , Estrutura Molecular , Pectinas/química , Pectinas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato
13.
Methods Mol Biol ; 1835: 217-228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109655

RESUMO

Solid-state fermentation (SSF) has been largely employed during the last three decades to produce different biomolecules of industrial interest, particularly enzymes. Through the use of agroindustrial wastes as SSF substrates, an economic process of lipases production can be achieved. In this chapter we describe a comprehensive SSF method for producing an economical preparation of Rhizomucor miehei lipase, employing sugarcane bagasse and used vegetal oil as substrates. To demonstrate the usefulness of the lipase produced by this method, we utilized directly the dried fermented solid, as a heterogeneous biocatalyst for the ethanolysis of different fats and oils. Final ethyl ester conversions (>90%, 24 h) were similar with those obtained using a commercial immobilized Rhizomucor miehei lipase at our best conditions. In this work we demonstrated that SSF is an easy and economical method for the production of lipases that can be used directly as heterogeneous biocatalysts for biodiesel production, employing low-cost feedstocks.


Assuntos
Bioengenharia , Fermentação , Lipase/biossíntese , Bioengenharia/instrumentação , Bioengenharia/métodos , Biocombustíveis , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Cinese , Lipase/isolamento & purificação , Temperatura
14.
Methods Mol Biol ; 1835: 119-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109648

RESUMO

To date, several sensitive methods, based on radiolabeled elements or sterically hindered fluorochrome groups, are usually employed to screen lipase and phospholipase A (PLA) activities. Here, a new ultraviolet spectrophotometric assay for lipase or PLA was developed using natural triglycerides or synthetic glycerophosphatidylcholines containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) purified from Aleurites fordii seed oil. The conjugated triene present in α-eleostearic acid constitutes an intrinsic chromophore and consequently confers strong UV absorption properties of this free fatty acid as well as of lipid substrates harboring it. The substrate was coated into the wells of a microplate, and the lipolytic activities were measured by the absorbance increase at 272 nm due to the transition of α-eleostearic acid moiety from the adsorbed to the soluble state. This continuous assay is compatible with a high-throughput screening method and can be applied specifically to the screening of new potential lipase, PLA1 and PLA2 inhibitors.


Assuntos
Ácidos Linolênicos/metabolismo , Lipase/metabolismo , Fosfolipases A/metabolismo , Espectrofotometria , Ativação Enzimática , Ensaios Enzimáticos/métodos , Lipase/química , Lipólise , Fosfolipases A/química , Óleos de Plantas/química , Espectrofotometria/métodos , Espectrofotometria/normas , Espectrofotometria Ultravioleta/métodos , Especificidade por Substrato
15.
Comb Chem High Throughput Screen ; 19(8): 616-626, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552434

RESUMO

Feruloyl esterases (FAEs) are a diverse group of hydrolases widely distributed in plants and microorganisms which catalyzes the cleavage and formation of ester bonds between plant cell wall polysaccharides and phenolic acids. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing highadded value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production, characterization and classification of FAEs, however only a few reports of suitable High Throughput Screening assays for this kind of enzymes have been reported. This review is focused on a concise but complete revision of classical to High Throughput Screening methods for FAEs, highlighting its advantages and disadvantages, and finally suggesting future perspectives for this important research field.


Assuntos
Hidrolases de Éster Carboxílico , Esterificação , Ensaios de Triagem em Larga Escala/métodos , Biotecnologia/métodos , Parede Celular/química , Ensaios de Triagem em Larga Escala/tendências , Células Vegetais/ultraestrutura , Polissacarídeos/química
16.
Food Funct ; 4(4): 618-26, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23389749

RESUMO

The growing incidence of obesity is a worldwide public health problem leading to a risk factor for non-alcoholic fatty liver disease, which extends from steatosis to steatohepatitis and cirrhosis. We investigated whether the aqueous extract of Hibiscus sabdariffa L. (Hs) reduces body weight gain and protects the liver by improving lipid metabolism in high fat diet-induced obese C57BL/6NHsd mice. We found that oral administration of the Hs extract reduced fat tissue accumulation, diminished body weight gain and normalized the glycemic index as well as reduced dyslipidemia compared to the obese mice group that did not receive Hs treatment. In addition, Hs treatment attenuated liver steatosis, down-regulated SREBP-1c and PPAR-γ, blocked the increase of IL-1, TNF-α mRNA and lipoperoxidation and increased catalase mRNA. Our results suggest that the anti-obesity, anti-lipidemic and hepatoprotective effects of the Hs extract are related to the regulation of PPAR-γ and SREBP-1c in the liver.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Hibiscus/química , Obesidade/complicações , PPAR gama/genética , Extratos Vegetais/administração & dosagem , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Fármacos Antiobesidade/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Interleucina-1/genética , Interleucina-1/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Obesidade/metabolismo , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Electron. j. biotechnol ; 35: 1-9, sept. 2018. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1047456

RESUMO

Background: Aspergillus ochraceus was isolated from coffee pulp and selected as an interesting hydroxycinnamoyl esterase strain producer, using an activity microplate high-throughput screening method. In this work, we purified and characterized a new type C A. ochraceus feruloyl esterase (AocFaeC), which synthesized specifically butyl hydroxycinnamates in a ternary solvent system. Results: AocFaeC was produced by solid state fermentation, reaching its maximal activity (1.1 U/g) after 48 h of culture. After purification, the monomeric protein (34 kDa) showed a specific activity of 57.9 U/mg towards methyl ferulate. AocFaeC biochemical characterization confirmed its identity as a type C feruloyl esterase and suggested the presence of a catalytic serine in the active site. Its maximum hydrolytic activity was achieved at 40°C and pH 6.5 and increased by 109 and 77% with Ca2+ and Mg2+, but decreased by 90 and 45% with Hg2+ and Cu2+, respectively. The initial butyl ferulate synthesis rate increased from 0.8 to 23.7 nmol/min after transesterification condition improvement, using an isooctane:butanol:water ternary solvent system, surprisingly the synthesis activity using other alcohols was negligible. At these conditions, the synthesis specific activities for butyl p-coumarate, sinapinate, ferulate, and caffeate were 87.3, 97.6, 168.2, and 234 U/µmol, respectively. Remarkably, AocFaeC showed 5 folds higher butyl caffeate synthesis rate compared to type B Aspergillus niger feruloyl esterase, a well-known enzyme for its elevated activity towards caffeic acid esters. Conclusions: Type C feruloyl esterase from A. ochraceus is a butanol specific biocatalyst for the synthesis of hydroxycinnamates in a ternary solvent system


Assuntos
Aspergillus ochraceus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Cumáricos/síntese química , Solventes , Espectrofotometria , Hidrolases de Éster Carboxílico/isolamento & purificação , Cromatografia , Café , Butanóis , Eletroforese , Fermentação
18.
Med. U.P.B ; 24(1): 29-37, abr. 2005. ilus
Artigo em Espanhol | LILACS | ID: lil-594285

RESUMO

El Síndrome del Túnel del Carpo es considerado actualmente como la enfermedad de compresión nerviosa más común del miembro superior. Presentamos los aspectos más relevantes de la enfermedad como incidencia, curso, hallazgos clínicos, diagnóstico y la conducta que debe tomarse para un enfoque y tratamiento acertados. Esto, por supuesto, haciendo énfasis en el enfoque y manejo del médico general.


Carpa! TUlmel Syndrome is considered today the most cornmon upper limb nerve compression disorder. We present the most relevant aspects of the illness such as incidence, curse, clinica! fmdings, diagnosis and the conduct to take for an approach and treatment. This, of course making emphasis on the primary carephysician approach and management.


Assuntos
Humanos , Síndrome do Túnel Carpal , Nervo Mediano , Compressão Nervosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa