Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 245: 117989, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128596

RESUMO

The aim of the present study was to determine the efficacy of LAB strains in reducing the intestinal toxicity of arsenite [As(III)] and its tissue accumulation. For this purpose, Balb/c mice were randomly separated in four groups. One group received no treatment (control), one group received only As(III) (30 mg/L) via drinking water and the remaining two groups received As(III) via water and a daily dose of two LAB strains (Lactobacillus intestinalis LE1 and Lacticaseibacillus paracasei BL23) by gavage during 2 months. The results show that both strains reduce the pro-inflammatory and pro-oxidant response observed at the colonic level, partially restore the expression of the intercellular junction proteins (CLDN3 and OCLN) responsible for the maintenance of epithelial integrity, and increase the synthesis of the major mucin of the colonic mucus layer (MUC2), compared to animals treated with As(III) alone. Microbial metabolism of short-chain fatty acids also undergoes a recovery and the levels of fatty acids in the lumen reach values similar to those of untreated animals. All these positive effects imply the restoration of mucosal permeability, and a reduction of the marker of endotoxemia LPS binding protein (LBP). Treatment with the bacteria also has a direct impact on intestinal absorption, reducing the accumulation of As in the internal organs. The data suggest that the protective effect may be due to a reduced internalization of As(III) in intestinal tissues and to a possible antioxidant and anti-inflammatory activity of the bacteria through activation of pathways such as Nrf2 and IL-10. In vitro tests show that the protection may be the result of the combined action of structural and metabolic components of the LAB strains.


Assuntos
Arsenitos , Água Potável , Camundongos , Animais , Mucosa Intestinal/metabolismo , Arsenitos/toxicidade , Lactobacillus , Bactérias
2.
Chem Biol Interact ; 373: 110404, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791901

RESUMO

Chronic exposure to inorganic arsenic [As(III) and As(V)] affects about 200 million people, and is linked to a greater incidence of certain types of cancer. Drinking water is the main route of exposure, so, in endemic areas, the intestinal mucosa is constantly exposed to the metalloid. However, studies on the intestinal toxicity of inorganic As are scarce. The objective of this study was to evaluate the toxicity of a chronic exposure to As(III) on the intestinal mucosa and its associated microbiota. For this purpose, BALB/c mice were exposed during 6 months through drinking water to As(III) (15 and 30 mg/L). Treatment with As(III) increased reactive oxygen species (43-64%) and lipid peroxidation (8-51%). A pro-inflammatory response was also observed, evidenced by an increase in fecal lactoferrin (23-29%) and mucosal neutrophil infiltration. As(III) also induced an increase in the colonic levels of pro-inflammatory cytokines (24-201%) and the activation of some pro-inflammatory signaling pathways. Reductions in the number of goblet cells and mucus production were also observed. Moreover, As(III) exposure resulted in changes in gut microbial alpha diversity but no differences in beta diversity. This suggested that the abundance of some taxa was significantly affected by As(III), although the composition of the population did not show significant alterations. Analysis of differential taxa agreed with this, 21 ASVs were affected in abundance or variability, especially ASVs from the family Muribaculaceae. Intestinal microbiota metabolism was also affected, as reductions in fecal concentration of short-chain fatty acids were observed. The effects observed on different components of the intestinal barrier may be responsible of the increased permeability in As(III) treated mice, evidenced by an increase in fecal albumin (48-66%). Moreover, serum levels of Lipopolysaccharide binding proteins and TNF-α were increased in animals treated with 30 mg/L of As(III), suggesting a low-level systemic inflammation.


Assuntos
Arsenitos , Água Potável , Camundongos , Animais , Arsenitos/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos BALB C , Homeostase , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa