Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2183: 575-585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959269

RESUMO

Despite the widespread need to assess cell-based viral infectivity during vaccine development and production, as well as viral clearance monitoring and adventitious agent testing for viral safety, traditional methods, including the end-point dilution assay (TCID50) and viral plaque assay, are slow, labor-intensive, and can vary depending upon the skill and experience of the user. LumaCyte's Radiance® instrument uses Laser Force CytologyTM (LFC), a combination of advanced optics and microfluidics, to rapidly analyze the viral infectivity of cell populations in a quantitative fashion. LFC applies optical and fluidic forces to single cells in order to measure their intrinsic biophysical and biochemical properties without the use of stains, antibodies or fluorescent labels. These properties, including refractive index, change with a wide variety of biological phenomena, including viral infection, cell differentiation, activation, size, and cytoskeletal stiffness. Here, we present the experimental design and methods to use LFC data to facilitate rapid and robust infectivity measurements for a variety of applications including initial titer measurement (TCID50 replacement), in-process infectivity (e.g., bioreactor monitoring), and viral neutralization (PRNT replacement).


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Testes de Neutralização , Carga Viral , Ensaio de Placa Viral , Viroses/imunologia , Viroses/virologia , Animais , Adesão Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Células Sf9 , Vacinas/imunologia , Células Vero , Viroses/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa