Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 78(5): 287-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734625

RESUMO

Contamination of natural waters has been one of the major problems of modern society and the textile industry is rated as an important polluting source, due to the generation of large amounts of wastewaters. The aim of this study was to assess textile dyes Reactive Blue 19 (RB19, anthraquinone dye) and Reactive Red 120 (RR120, azo dye) in terms of the potential to induce adverse effects on aquatic organisms and humans. Thus, these dyes were tested using the following assays: Microtox assay (Vibrio fischeri); brine shrimp (Artemia salina); Daphnia similis; and Comet with normal human dermal fibroblasts as well as Ames test (TA98, TA100, YG1041, YG1042--with and without S9). RB19 was relatively nontoxic to all aquatic bioindicators analyzed with an EC50 of more than 100 mg/L, whereas RR120 was only moderately toxic to A. salina with a EC50-48h of 81.89 mg/L. Mutagenicity through base pair substitution was observed with RB19 in the presence of S9 (Ames-positive). The comet assay did not demonstrate any apparent genotoxic effects for any tested dye. Although mutagenicity was detected with RB19, the mutagenic effect observed may be considered weak compared to the ability to induce DNA damage by other classes of dyes such as disperse dyes. Therefore, these dyes may be classified as nonmutagens (RR120) or weak mutagens (RB19) and relatively nontoxic for aquatic organisms. However, it is noteworthy that the weak acute toxicity to A. salina induced by RR120 is sufficient to suggest potential damage to the aquatic ecosystem and emphasizes the need for biomonitoring dye levels in wastewater systems.


Assuntos
Antraquinonas/toxicidade , Corantes/toxicidade , Triazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Animais , Artemia/efeitos dos fármacos , Ensaio Cometa , Daphnia/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Indústria Têxtil
2.
Environ Toxicol Chem ; 40(2): 333-341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210755

RESUMO

Thymol, a monoterpene phenol, is used as a natural biocide. To circumvent its chemical instability, we propose use of thymol-loaded biogenic silica nanoparticles (BSiO2 #THY NPs); however, the toxicity of this system for aquatic organisms is unknown. Thus, the present study aimed to evaluate the toxicogenetic effects induced by thymol, BSiO2 NP, and BSiO2 #THY on Artemia salina and zebrafish (Danio rerio) early life stages. We also investigated the impact of BSiO2 aggregation in different exposure media (saline and freshwater). Based on the median lethal concentration at 48 h (LC5048h ), BSiO2 #THY (LC5048h = 1.06 mg/L) presented similar toxic potential as thymol (LC5048h = 1.03 mg/L) for A. salina, showing that BSiO2 had no influence on BSiO2 #THY toxicity. Because BSiO2 aggregated and sedimented faster in A. salina aqueous medium than in the other medium, this NP had lower interaction with this microcrustacean. Thus, BSiO2 #THY toxicity for A. salina is probably due to the intrinsic toxicity of thymol. For zebrafish early life stages, BSiO2 #THY (LC5096h = 13.13 mg/L) was more toxic than free thymol (LC5096h = 25.60 mg/L); however, BSiO2 NP has no toxicity for zebrafish early life stages. The lower aggregation of BSiO2 in the freshwater medium compared to the saline medium may have enhanced thymol's availability for this aquatic organism. Also, BSiO2 #THY significantly induced sublethal effects as thymol, and both were genotoxic for zebrafish. In conclusion, although BSiO2 #THY still needs improvements to ensure its safety for freshwater ecosystems, BSiO2 NP seems to be a safe nanocarrier for agriculture. Environ Toxicol Chem 2021;40:333-341. © 2020 SETAC.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Ecossistema , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Timol/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
3.
Chem Biol Interact ; 291: 171-179, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29935967

RESUMO

The textile dyeing industry is one of the main sectors contributing to environmental pollution, due to the generation of large amounts of wastewater loaded with dyes (ca. 2-50% of the initial amount of dyes used in the dye baths is lost), causing severe impacts on human health and the environment. In this context, an ecotoxicity testing battery was used to assess the acute toxicity and genotoxicity of the textile dyes Direct Black 38 (DB38; azo dye) and Reactive Blue 15 (RB15; copper phthalocyanine dye) on different trophic levels. Thus these dyes were tested using the following assays: Filter paper contact test with earthworms (Eisenia foetida); seed germination and root elongation toxicity test (Cucumis sativus, Lactuca sativa and Lycopersicon esculentum); acute immobilization test (Daphnia magna and Artemia salina); and the Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) and D. magna. Neither phytotoxicity nor significant effects on the survival of E. foetida were observed after exposure to DB38 and RB15. Both dyes were classified as relatively non-toxic to D. magna (LC50 > 100 mg/L), but DB38 was moderately toxic to A. salina with a LC50 of 20.7 mg/L. DB38 and RB15 induced significant effects on the DNA of D. magna but only DB38 caused direct (alkaline comet assay) and oxidative (hOGG1-modified alkaline comet assay) damage to RTG-2 cells in hormetic responses. Therefore, the present results emphasize that a test battery approach of bioassays representing multiple trophic levels is fundamental in predicting the toxicity of textile dyes, aside from providing the information required to define their safe levels for living organisms in the environment.


Assuntos
Corantes/análise , Ecotoxicologia , Indústria Têxtil , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise , Animais , Artemia/efeitos dos fármacos , Linhagem Celular , Corantes/química , Corantes/toxicidade , DNA/metabolismo , Dano ao DNA , Daphnia/efeitos dos fármacos , Determinação de Ponto Final , Germinação/efeitos dos fármacos , Imobilização , Mutagênicos/toxicidade , Oligoquetos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa