Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3199-3209, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27531710

RESUMO

BACKGROUND: One of the main challenges in snakebite envenomation treatment is the development of stable, versatile and efficient anti-venom therapies. Local myotoxicity in accidents involving snakes from the Bothrops genus is still a consequence of serum therapy inefficient neutralization that may lead to permanent sequelae in their victims. One of the classes of toxins that participate in muscle necrosis is the PLA2-like proteins. The aim of this work was to investigate the role of zinc ions in the inhibition of PLA2-like proteins and to advance the current knowledge of their action mechanism. METHODS: Myographic and electrophysiological techniques were used to evaluate the inhibitory effect of zinc ions, isothermal titration calorimetry assays were used to measure the affinity between zinc ions and the toxin and X-ray crystallography was used to reveal details of this interaction. RESULTS: We demonstrated that zinc ions can effectively inhibit the toxin by the interaction with two different sites, which are related to two different mechanism of inhibition: preventing membrane disruption and impairing the toxin state transition. Furthermore, structural study presented here included an additional step in the current myotoxic mechanism improving the comprehension of the allosteric transition that PLA2-like proteins undergo to exert their function. CONCLUSIONS: Our findings show that zinc ions are inhibitors of PLA2-like proteins and suggest two different mechanisms of inhibition for these ions. GENERAL SIGNIFICANCE: Zinc is a new candidate that can assist in anti-venom treatments and can promote the design of new and even more accurate structure-based inhibitors for PLA2-like proteins.


Assuntos
Venenos de Crotalídeos/toxicidade , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/toxicidade , Zinco/metabolismo , Animais , Bothrops , Calorimetria , Venenos de Crotalídeos/química , Cristalografia por Raios X , Diafragma/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Íons , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Modelos Moleculares , Fosfolipases A2/química , Nervo Frênico/efeitos dos fármacos
2.
Muscle Nerve ; 47(4): 591-3, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23460475

RESUMO

INTRODUCTION: Crotamine is a basic, low-molecular-weight peptide that, at low concentrations, improves neurotransmission in isolated neuromuscular preparations by modulating sodium channels. In this study, we compared the effects of crotamine and neostigmine on neuromuscular transmission in myasthenic rats. METHODS: We used a conventional electromyographic technique in in-situ neuromuscular preparations and a 4-week treadmill program. RESULTS: During the in-situ electromyographic recording, neostigmine (17 µg/kg) caused short-term facilitation, whereas crotamine induced progressive and sustained twitch-tension enhancement during 140 min of recording (50 ± 5%, P < 0.05). On the treadmill evaluation, rats showed significant improvement in exercise tolerance, characterized by a decrease in the number of fatigue episodes after 2 weeks of a single-dose treatment with crotamine. CONCLUSIONS: These results indicate that crotamine is more efficient than neostigmine for enhancing muscular performance in myasthenic rats, possibly by improving the safety factor of neuromuscular transmission.


Assuntos
Inibidores da Colinesterase/uso terapêutico , Venenos de Crotalídeos/uso terapêutico , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Neostigmina/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Eletromiografia , Tolerância ao Exercício/efeitos dos fármacos , Membro Posterior , Masculino , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Transmissão Sináptica/efeitos dos fármacos , Resultado do Tratamento
3.
Muscle Nerve ; 46(5): 810-3, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23055317

RESUMO

INTRODUCTION: In Duchenne muscular dystrophy and in the mdx mouse, muscle fiber degeneration and subsequent fibrosis lead to cardiorespiratory failure. Previously, we demonstrated that the anti-fibrotic agent suramin was effective in decreasing fibrosis in mdx muscles. In this study, we were interested to see whether suramin could affect metalloproteinases (MMP) and improve the functional activity of the mdx diaphragm muscle. METHODS: Zymography was performed to evaluate MMP-2 and MMP-9 activity. Western blotting was used to analyze the levels of beta-dystroglycan. Muscle function was assessed in hemidiaphragm in vitro preparations. RESULTS: We found that suramin affects metalloproteinase-9 activity and increases beta-dystroglycan. Furthermore, suramin also protects against diaphragm muscle fatigue over time. CONCLUSIONS: These results show the potential benefits of suramin in maintaining the structure of the dystrophin-glycoprotein complex.


Assuntos
Diafragma/metabolismo , Distroglicanas/metabolismo , Distrofina/deficiência , Metaloproteinase 9 da Matriz/metabolismo , Suramina/farmacologia , Animais , Diafragma/efeitos dos fármacos , Distroglicanas/biossíntese , Distrofina/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Fibrose , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Molecules ; 17(6): 7503-22, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706376

RESUMO

Guanidine has been used with some success to treat myasthenia gravis and myasthenic syndrome because it increases acetylcholine release at nerve terminals through K⁺, Na⁺ and Ca²âº channels-involving mechanisms. Currently, guanidine derivatives have been proposed for treatment of several diseases. Studies aimed at providing new insights to the drug are relevant. Experimentally, guanidine (10 mM) induces on mouse phrenic nerve-diaphragm (PND) preparations neurotransmission facilitation followed by blockade and a greatest secondary facilitation after its removal from bath. Herein, we hypothesized that this peculiar triphasic response may differ in muscles with distinct twitch/metabolic characteristics. Morphological alterations and contractile response of PND, extensor digitorum longus (EDL) and soleus (SOL) preparations incubated with guanidine (10 mM) for 15, 30, 60 min were analyzed. Guanidine concentrations of 5 mM (for PND and EDL) and 1 mM (for EDL) were also tested. Guanidine triphasic effect was only observed on PND regardless the concentration. The morphological alterations in muscle tissue varied along time but did not impede the PND post-wash facilitation. Higher doses (20-25 mM) did not increase EDL or SOL neurotransmission. The data suggest a complex mechanism likely dependent on the metabolic/contractile muscle phenotype; muscle fiber types and density/type of ion channels, sarcoplasmic reticulum and mitochondria organization may have profound impact on the levels and isoform expression pattern of Ca²âº regulatory membrane proteins so reflecting regulation of calcium handling and contractile response in different types of muscle.


Assuntos
Diafragma/efeitos dos fármacos , Guanidina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Animais , Cálcio/metabolismo , Diafragma/citologia , Diafragma/metabolismo , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miografia , Transmissão Sináptica/efeitos dos fármacos
5.
Muscle Nerve ; 41(4): 540-6, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19941343

RESUMO

Polyethylene glycol (PEG) has been widely used as a solvent among other applications. An ideal solvent is one that does not interfere with an in vitro biological system, unless it is a bioactive agent. Herein, a facilitatory neurotransmission effect was exhibited by PEG (20 microM) in mammalian (67 +/- 12.5%, n = 4) and avian (74 +/- 6.8%, n = 6) neuromuscular preparations. In curarized preparations, PEG did not reverse the neurotransmission blockade induced by D-tubocurarine (D-Tc, 5.8 microM, n = 6) as promoted by neostigmine (12 microM, n = 4). A possible presynaptic action of PEG was ruled out, because quantal acetylcholine (ACh) content was similar to the control Tyrode-incubated mammalian preparation. PEG showed improved sarcolemmal sensitivity, both under direct (sarcolemma) and indirect stimulation (motor axon), because it was able to release calcium from the sarcoplasmic reticulum, even when 30 microM dantrolene (n = 5) was previously applied. Neurotransmission decreased at a higher PEG concentration (100 microM, n = -6) in the depolarized membrane, but it did not alter normal muscle fiber morphology. In addition, it partially recovered twitch tension amplitude (55 +/- 5.7%) after washing the preparations. More than a simple solvent, we suggest that PEG 400 is able to act on the sarcolemmal membrane, probably at the triad level, which is in line with its well-known ability as drug carrier.


Assuntos
Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/fisiologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Polietilenoglicóis/farmacologia , Animais , Aves , Galinhas , Técnicas In Vitro , Masculino , Camundongos , Especificidade da Espécie
6.
J Venom Res ; 10: 32-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024546

RESUMO

Philodryas olfersii produces similar local effects to Bothrops jararacussu snakebite, which can induce misidentification and bothropic antivenom administration. Antivenom therapy is effective, but has its limitations regarding local damage. Since plants are used in folk medicine to treat snakebite victims, we evaluated the protective properties of Cordia salicifolia and Lafoensia pacari extracts against Philodryas olfersii and Bothrops jararacussu venoms. Preparations pretreated with both extracts inhibited > 90% the B. jararacussu venom-induced neuromuscular blockade, and 52% to 81% the P. olfersii venom-induced blockade. C. salicifolia inhibited the myonecrosis promoted by both venoms; however, L. pacari prevented only the myofilaments hypercontraction. Regarding haemorrhagic activity, C. salicifolia was more effective against B. jararacussu venom, while L. pacari was more effective against P. olfersii venom. On the other hand, for oedema-forming activity the results were the opposite. Considering that both extracts prevented (to different levels) the main manifestations of both snakebites (local symptoms), we endorse further studies involving these plants as coadjuvant in snakebite therapeutics.

7.
Photochem Photobiol ; 85(1): 63-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18643907

RESUMO

Antivenom therapy has been ineffective in neutralizing the severe local fast developing tissue damage following snakebite envenoming. Herein, some effects of in situ helium neon (HeNe) laser irradiation on rat nerve-muscle preparation injected with Bothrops jararacussu venom are described. The tibialis anterior muscle was injected with venom diluted in 0.9% saline solution (60 microg/0.02 mL) or saline solution alone. Sixty minutes after venom injection, laser (HeNe) treatment was administered at three incident energy densities: dose 1, a single exposure of 3.5 J cm(-2); dose 2, three exposures of 3.5 J cm(-2); dose 3, a single exposure of 10.5 J cm(-2). Muscle function was assessed through twitch tension recordings whereas muscle damage was evaluated through histopathologic analysis, morphometry of area of tissue affected and creatine kinase (CK) serum levels, and compared to unirradiated muscles. Laser application at the dose of 3.5 J cm(-2) reduced the area of injury by 64% (15.9 +/- 1.5%vs 44.2 +/- 5.7%), decreased the neuromuscular blockade (NMB) by 62% (11.5 +/- 2.5%vs 30.4 +/- 5.2%) and reduced CK levels by 58% (from 455 +/- 4.5% to 190.3 +/- 23.4%) when compared with unirradiated controls. Dose 2 showed a poorer benefit than dose 1, and dose 3 was ineffective in preventing the venom effects. Measurements of the absorbance of unirradiated and irradiated venom solution showed no difference in absorption spectra. In addition, no difference in the intensity of partial NMB in nerve-muscle preparation was shown by unirradiated and irradiated venom. The results indicate that the laser light did not alter venom toxicity. We conclude that HeNe laser irradiation at a dosage of 3.5 J cm(-2) effectively reduces myonecrosis and the neuromuscular transmission blocking effect caused by B. jararacussu snake venom. Thus, low level laser therapy may be a promising tool to minimize the severity of some of the local effects of snake envenoming.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Doenças Musculares/radioterapia , Venenos de Serpentes/farmacologia , Animais , Bothrops , Masculino , Doenças Musculares/sangue , Doenças Musculares/enzimologia , Doenças Musculares/patologia , Ratos , Ratos Wistar
8.
Toxins (Basel) ; 11(6)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212818

RESUMO

MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 µM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.


Assuntos
Cobras Corais , Venenos Elapídicos/toxicidade , Canal de Potássio Kv1.2/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/toxicidade , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oócitos/fisiologia , Fosfolipases A2 , Xenopus
9.
Biochim Biophys Acta ; 1770(4): 585-93, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17270350

RESUMO

BaTX PLA(2), a K49 phospholipase A(2) homologue was purified from Bothrops alternatus venom after two chromatographic steps, molecular exclusion on Superdex 75 and reverse phase HPLC on mu-Bondapack C-18. A molecular mass of 13898.71 Da was determined by MALDI-TOF mass spectrometry. The amino acid composition showed that BaTX has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA(2). The complete amino acid sequence of BaTX PLA(2) contains 121 residues, resulting in a calculated pI value of 8.63. This sequence shows high identity values when compared to other K49 PLA(2)s isolated from the venoms of viperid snakes. Lower identity is observed in comparison to D49 PLA(2)s. The sequence was SLFELGKMIL QETGKNPAKS YGAYYCYCGW GGQGQPKDAT DRCCYVHKCC YKKLTGCNPK KDRYSYSWKD KTIVCGENNS CLKELCECDK AVAICLRENL NTYNKKYRYY LKPLCKKADA C. In mice, BaTX induced myonecrosis and edema, upon intramuscular or subcutaneous injections, respectively. The LD(50) of BaTX was 7 mug/g body weight, by intravenous route. In vitro, the toxin caused a potent blockade of neuromuscular transmission in young chicken biventer cervicis preparations. The blockage 50% was achieved at a concentration of 0.03 microM: 40+/-0.4 min and 0.07 microM: 35+/-0.3 min. Moreover, this protein induced a rapid cytolytic effect upon mouse skeletal muscle myoblasts in culture. Thus, the combined structural and functional information obtained identify BaTX as a new member of the K49 PLA(2) family, which presents the typical bioactivities described for such proteins.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/enzimologia , Fosfolipases A/química , Fosfolipases A/toxicidade , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Técnicas In Vitro , Isoenzimas/química , Dose Letal Mediana , Lisina , Camundongos , Dados de Sequência Molecular , Peso Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Mioblastos Esqueléticos/efeitos dos fármacos , Necrose , Junção Neuromuscular/efeitos dos fármacos , Fosfolipases A/isolamento & purificação , Fosfolipases A2 , Conformação Proteica , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
10.
Toxicol In Vitro ; 22(1): 240-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17920236

RESUMO

The toxicity of crotoxin, the major toxin of Crotalus durissus terrificus (South American rattlesnake) venom, is mediated by its basic phospholipase A(2) (PLA(2)) subunit. This PLA(2) is non-covalently associated with crotapotin, an acidic, enzymatically inactive subunit of the crotoxin complex. In this work, rabbit antiserum raised against crotapotin purified from Crotalus durissus cascavella venom was tested for its ability to neutralize the neurotoxicity of this venom and its crotoxin in vitro. The ability of this antiserum to inhibit the enzymatic activity of the crotoxin complex and PLA(2) alone was also assessed, and its potency in preventing myotoxicity was compared with that of antisera raised against crotoxin and PLA(2). Antiserum to crotapotin partially neutralized the neuromuscular blockade caused by venom and crotoxin in electrically stimulated mouse phrenic nerve-hemidiaphragm preparations and prevented the venom-induced myotoxicity, but did not inhibit the enzymatic activity of crotoxin and purified PLA(2). In contrast, previous findings showed that antisera against crotoxin and PLA(2) from C. d. cascavella effectively neutralized the neuromuscular blockade and PLA(2) activity of this venom and its crotoxin. The partial neutralization of crotoxin-mediated neurotoxicity by antiserum to crotapotin probably reduced the binding of crotoxin to its receptor following interaction of the antiserum with the crotapotin moiety of the complex.


Assuntos
Antivenenos/farmacologia , Venenos de Crotalídeos/antagonistas & inibidores , Crotoxina/antagonistas & inibidores , Neurotoxinas/antagonistas & inibidores , Animais , Antivenenos/imunologia , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/toxicidade , Crotalus , Crotoxina/imunologia , Crotoxina/toxicidade , Diafragma/efeitos dos fármacos , Diafragma/patologia , Estimulação Elétrica , Técnicas In Vitro , Masculino , Camundongos , Neurotoxinas/imunologia , Neurotoxinas/toxicidade , Fosfolipases A2/imunologia , Ligação Proteica/efeitos dos fármacos , Coelhos
11.
Protein J ; 27(6): 355-62, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18769889

RESUMO

Bp-12 was isolated from Bothrops pauloensis snake venom in only one chromatographic step in reverse phase HPLC on micro-Bondapack C-18. The molecular mass of 13,789.56 Da was determined by mass spectrometry. The amino acids composition showed that Bp-12 presented high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA(2). The sequence of Bp-12 contains 122 amino acid residues: SLFELGKMIL QETGKNPAKS LGAFYCYCGW GSQGQPKDAV DRCCYVHKCC YKKITGCNPK KDRYSYSWKD KTLVCGEDNS CLKELCECDK AVAICLRENL NTYNKKYRYF LKPLCKKADA AC, with a pI value of 8.55 and with a high homology with Lys49 PLA(2) from other snake venoms. In mouse phrenic nerve-diaphragm, the time needed for 50% paralysis was: 45 +/- 6 min (1.4 microM) and 16 +/- 6 min (3.6 microM). Bp-12 can induce indirect and directly blocked evoked twitches, even in the preparations in which Ca(2+) is replaced by Sr(2+), being the addition of d-tubocurarine required for direct blocking. These results identify Bp-12 as a new member of the Lys49 PLA(2) family and shows that this toxin might contribute to the effects of the crude venom on the neuromuscular junction.


Assuntos
Bothrops , Venenos de Crotalídeos/química , Venenos de Crotalídeos/toxicidade , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/toxicidade , Junção Neuromuscular/efeitos dos fármacos , Proteínas de Répteis/química , Proteínas de Répteis/toxicidade , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Diafragma/efeitos dos fármacos , Fosfolipases A2 do Grupo II/isolamento & purificação , Ponto Isoelétrico , Masculino , Camundongos , Dados de Sequência Molecular , Peso Molecular , Proteínas de Répteis/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Adv Pharm Bull ; 8(3): 517-522, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30276149

RESUMO

Purpose: Rhinella schneideri is a toad found in many regions of the South America. The poison of the glands has cardiotoxic effect in animals and neuromuscular effects in mice and avian preparation. The purpose of this work was to identify the toxin responsible for the neuromuscular effect in avian and mice neuromuscular preparation. Methods: The methanolic extract from R. schneideri poison was fractioned by reversed phase HPLC. The purity and molecular mass were determined by LC/MS mass spectrometry. Chick biventer cervicis and mouse phrenic-nerve diaphragm were used as neuromuscular preparations to identify the toxin. Results: The purification resulted in 32 fractions, which 4 of them were active in neuromuscular preparation. The toxin of fraction 20 were chosen for better reproducibility of the whole extract activity and its molecular mass was 730.6 Da. The toxin produced facilitation of the muscle contraction followed by a complete neuromuscular blockade in chick biventer cervicis preparation in 90 min without interfering with the exogenous response to ACh and KCl. The quantal content was increased from 128 ± 13 (control) to 216 ± 44 (after 5 min and sustained until 60 min) in the presence of the toxin. Conclusion: In conclusion, our results demonstrated that the neuromuscular action of the poison of Rhinella schneideri is a multitoxin effect. More, the present work first isolated a 730.6 Da toxin that better represent the whole poison neuromuscular effect, to which is attributed a presynaptic action in avian and mouse neuromuscular preparation.

13.
Protein J ; 26(4): 221-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17203389

RESUMO

A new crotoxin B isoform PLA(2) (F6a), from Crotalus durissus collilineatus was purified from by one step reverse phase HPLC chromatography using mu-Bondapack C-18 column analytic. The new crotoxin B isoform PLA(2) (F6a), complex crotoxin, the catalytic subunit crotoxin B isoform PLA(2) (F6a) and two crotapotin isoforms (F3 and F4), were isolated from the venom of Crotalus durissus collilineatus. The crotapotins isoforms F3 and F4 had similar chemical properties, the two proteins different in their ability to inhibit of isoforms of PLA(2) (F6 and F6a). The molecular masses estimated by MALDI-TOF mass spectrometry were: crotoxin B: 14,943.14 Da, crotapotin F3: 8,693.24 Da, and crotapotin F4: 9 314.56 Da. The new crotoxin B isoform PLA(2) (F6a) contained 122 amino acid residues and a pI of 8.58. Its amino acid sequence presents high identity with those of other PLA(2)s, particularly in the calcium binding loop and active site helix 3. It also presents similarities in the C-terminal region with other myotoxic PLA(2)s. The new crotoxin B isoform PLA(2) (F6a) contained 122 amino acid residues, with a primary structure of HLLQFNKMIK FETRRNAIPP YAFYGCYCGW GGRGRPKDAT DRCCFVHDCC YGKLAKCNTK WDFYRYSLKS GYITCGKGTW CEEQICECDR VAAECLRRSL STYRYGYMIY PDSRCRGPSE TC. A neuromuscular blocking activity was induced by crotoxin and new crotoxin B isoform PLA(2) (F6a) in the isolated mouse phrenic nerve diaphragm and the biventer cervicis chick nerve-muscle preparation. Whole crotoxin was devoid of cytolytic activity upon myoblasts and myotubes in vitro, whereas new crotoxin B isoform PLA(2) (F6a) was clearly cytotoxic to these cells.


Assuntos
Crotoxina/química , Fosfolipases A/química , Sequência de Aminoácidos , Animais , Galinhas , Crotalus , Masculino , Camundongos , Dados de Sequência Molecular , Neurotoxinas/metabolismo , Nervo Frênico/metabolismo , Isoformas de Proteínas , Homologia de Sequência de Aminoácidos , Venenos de Serpentes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Toxicon ; 131: 29-36, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284847

RESUMO

Colombian colubrid snake venoms have been poorly studied. They represent a great resource of biological, ecological, toxinological and pharmacological research. We assessed some enzymatic properties and neuromuscular effects of Erythrolamprus bizona and Pseudoboa neuwiedii venoms from Colombia. Proteolytic, amidolytic and phospholipase A2 (PLA2) activities were analyzed using colorimetric assays and the neuromuscular activity was analyzed in chick biventer cervicis (BC) preparations. The venom of both species showed very low PLA2 and amidolytic activities; however, both exhibited high proteolytic activity, which in E. bizona venom surpassed that of P. neuwiedii venom. E. bizona and P. neuwiedii venoms provoked partial neuromuscular blockade, which was more prominent in P. neuwiedii venom. E. bizona venom (30 µg/ml) induced a significant potentiation of the contracture response to exogenous ACh (110 µM), which was not accompanied by twitch height alteration, whereas the highest venom concentration (100 µg/ml) inhibited contracture responses to both ACh and KCl (40 mM). In contrast, P. neuwiedii venom (30 and 100 µg/ml) caused significant reduction in the contracture responses to exogenous ACh and KCl. The morphological analyses showed high myotoxic effects in the muscle fibers of BC incubated with either venoms; however, they are more prominent in the P. neuwiedii venom. Our results suggest that the myotoxicity of the venom of the two Colombian species can be ascribed to their high proteolytic activity. An interesting data was the potentiation of the ACh-induced contracture, but not the twitch height, caused by E. bizona venom, at a concentration that is harmless to muscle fibers integrity. This phenomenon remains to be further elucidated, and suggest that a possible involvement of post-synaptic receptors cannot be discarded. This work is a contribution to expand the knowledge on colubrid venoms; it allows envisaging that the two venoms offer the potential to go further in the identification of their components and biological targets.


Assuntos
Colubridae , Elapidae , Contração Muscular/efeitos dos fármacos , Bloqueadores Neuromusculares/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Venenos de Serpentes/farmacologia , Animais , Galinhas , Técnicas In Vitro , Masculino , Fosfolipases A2/metabolismo
15.
Toxicon ; 130: 35-43, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28246021

RESUMO

Bothrops fonsecai (B. fonsecai), a pitviper endemic to southeastern Brazil, has a venom mainly composed by snake venom phospholipases (PLA2) and metalloproteases, compounds that could interfere with neuromuscular junction in vitro. In this work, we investigated the role of PLA2 in the myotoxicity and neuromuscular blockade caused by B. fonsecai venom using different procedures frequently associated with PLA2 activity inhibition: 24 °C bath temperature, Ca2+ - Sr2+ replacement and chemical modification with p-bromophenacyl bromide (p-BPB). Mice extensor digitorum longus preparations (EDL) were incubated with usual or modified Tyrode solution (prepared with Ca2+ or Sr2+ respectively) at 24 °C or 37 °C (as controls) and in addition of B. fonsecai venom (100 µg/mL) alone or after its incubation with buffer (24 h, 23 °C) on the absence (alkylation control) and presence of p-BPB; all muscle were processed for histological analysis. The PLA2, proteolytic and amidolytic activities under the same conditions (24 °C or 37 °C, Ca2+ - Sr2+ replacement, absence or presence p-BPB) were also assessed. The B. fonsecai venom caused total neuromuscular blockade after 100 min of incubation, in Ca2+ Tyrode solution at 37 °C (usual conditions); on Sr2+ Tyrode solution (37 °C) the twitch height were 31.7 ± 7.4% of basal, and at 24 °C (Ca2+ Tyrode solution) were 53.6 ± 7.0% of basal. The alkylation of PLA2 with p-BPB promoted a great blockade decrease at 100 min of incubation (88.7 ± 5.7% of basal), but it was also observed on alkylation control preparations (66.2 ± 6.6%). The venom produced 50% of blockade at 40.5 ± 5.9 min, in Ca2+ Tyrode solution at 37 °C. The protocols delayed the time for 50% blockade: 105.7 ± 7.1 min (at 24 °C, in Ca2+ Tyrode solution) and 71.1 ± 9.0 min (at 37 °C, in Sr2+ Tyrode solution). Regarding p-BPB incubation and alkylation control preparations, 50% of blockade was not reached during the 120 min of venom incubation. Regarding to enzymatic activities, the 24 °C protocol reduced not only PLA2 (to 62.3%) but also proteolytic (52.3%) and amidolytic (73.4%) activities, as well as observed on p-BPB alkylation protocol which markedly inhibited all enzymes (<10%). The alkylation control promoted the same proteolytic and amidolytic inhibition but no reduction of PLA2 activity; Ca2+ - Sr2+ replacement reduced only the PLA2 activity (to 15.3%). We observed a strict relation between the inhibition of PLA2 activity and the myotoxicity. On the other hand, this relation was not observed with neuromuscular blockade, suggesting that blockade and muscle damage may not be strictly related. It suggests that the neuromuscular blockade may be induced by non-catalytic PLA2 or other venom components, such as metalloproteinases.


Assuntos
Venenos de Crotalídeos/enzimologia , Músculo Esquelético/efeitos dos fármacos , Fosfolipases A2/farmacologia , Animais , Bothrops , Técnicas In Vitro , Masculino , Camundongos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Bloqueio Neuromuscular , Junção Neuromuscular/efeitos dos fármacos , Fosfolipases A2/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-27590117

RESUMO

In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA2, proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2µg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30µg/site) and significantly inhibited by both ratios. Venom (10-300µg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai.


Assuntos
Anticorpos Neutralizantes/imunologia , Antídotos , Antivenenos/imunologia , Bothrops/imunologia , Venenos de Crotalídeos/imunologia , Proteínas de Répteis/imunologia , Mordeduras de Serpentes/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Antídotos/farmacologia , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Western Blotting , Bothrops/metabolismo , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Reações Cruzadas , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/prevenção & controle , Eletroforese em Gel Bidimensional , Esterases/imunologia , Esterases/metabolismo , Fosfolipases A2 do Grupo II/imunologia , Fosfolipases A2 do Grupo II/metabolismo , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Masculino , Camundongos , Junção Neuromuscular/efeitos dos fármacos , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Proteólise , Ratos Wistar , Proteínas de Répteis/metabolismo , Proteínas de Répteis/toxicidade , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/enzimologia , Fatores de Tempo
17.
Toxicon ; 47(7): 759-65, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16626776

RESUMO

The whole venom of Lachesis muta muta is preponderantly neurotoxic but moderately myotoxic on the chick biventer cervicis preparation (BCp). We have now examined these toxic activities of a basic phospholipase A(2), LmTX-I, isolated from the whole venom. LmTX-I caused a significant concentration-dependent neuromuscular blockade in the BCp. The time to produce 50% neuromuscular blockade was 14.7+/-0.75 min (30 microg/ml), 23.6+/-0.9 min (10 microg/ml), 34+/-1.7 min (2.5 microg/ml) and 39.2+/-3.6 min (1 microg/ml), (n=5/concentration; p<0.05). Complete blockade with all tested concentrations was not accompanied by inhibition of the response to ACh. At the highest concentration, LmTX-I (30 microg/ml) significantly reduced contractures elicited by exogenous KCl (20mM), increased the release of creatine kinase (1542.5+/-183.9 IU/L vs 442.7+/-39.8 IU/L for controls after 120 min, p<0.05), and induced the appearance of degenerating muscle fibers ( approximately 15%). Quantification of myonecrosis indicated 14.8+/-0.8 and 2.0+/-0.4%, with 30 and 10 microg/mlvenom concentration, respectively, against 1.07+/-0.4% for control preparations. The findings indicate that the basic PLA(2) present on venom from L. m. muta (LmTX-I) possesses a dominant neurotoxic action on isolated chick nerve-muscle preparations, whereas myotoxicity was mainly observed at the highest concentration used (30 microg/ml). These effects of LmTX-I closely reproduce the effects of the whole venom of L. m. muta in chick neuromuscular preparations.


Assuntos
Venenos de Crotalídeos/enzimologia , Fosfolipases A/isolamento & purificação , Fosfolipases A/farmacologia , Viperidae/fisiologia , Acetilcolina , Animais , Galinhas , Venenos de Crotalídeos/química , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Bloqueadores Neuromusculares/química , Bloqueadores Neuromusculares/isolamento & purificação , Bloqueadores Neuromusculares/farmacologia , Fosfolipases A/química , Fosfolipases A2 , Cloreto de Potássio
18.
Microsc Res Tech ; 79(11): 1082-1089, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27535875

RESUMO

Bites by Bothrops snakes normally induce local pain, haemorrhage, oedema and myonecrosis. Mammalian isolated nerve-muscle preparations exposed to Bothrops venoms and their phospholipase A2 toxins (PLA2 ) can exhibit a neurotoxic pattern as increase in frequency of miniature end-plate potentials (MEPPs) as well as in amplitude of end-plate potentials (EPPs); neuromuscular facilitation followed by complete and irreversible blockade without morphological evidence for muscle damage. In this work, we analysed the ultrastructural damage induced by Bothrops jararacussu and Bothrops bilineatus venoms and their PLA2 toxins (BthTX-I and Bbil-TX) in mouse isolated nerve-phrenic diaphragm preparations (PND). Under transmission electron microscopy (TEM), PND preparations previously exposed to B. jararacussu and B. bilineatus venoms and BthTX-I and Bbil-TX toxins showed hypercontracted and loosed myofilaments; unorganized sarcomeres; clusters of edematous sarcoplasmic reticulum and mitochondria; abnormal chromatin distribution or apoptotic-like nuclei. The principal affected organelles, mitochondria and sarcoplasmic reticulum, were those related to calcium buffering and, resulting in sarcomeres and myofilaments hypercontraction. Schwann cells were also damaged showing edematous axons and mitochondria as well as myelin sheath alteration. These ultrastructural changes caused by both of Bothrops venoms and toxins indicate that the neuromuscular blockade induced by them in vitro can also be associated with nerve and muscle degeneration.


Assuntos
Venenos de Crotalídeos/toxicidade , Diafragma/efeitos dos fármacos , Fosfolipases A2 do Grupo II/toxicidade , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/ultraestrutura , Nervo Frênico/efeitos dos fármacos , Animais , Bothrops , Diafragma/ultraestrutura , Masculino , Camundongos , Nervo Frênico/ultraestrutura
19.
Toxicon ; 119: 345-51, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27390040

RESUMO

The physiological properties of colubrid snake venoms are largely unknown and less frequently investigated. In this study, we assessed the enzymatic properties and biological activities of Leptodeira annulata (banded cat-eyed snake) venom, an opistoglyphous snake from Colombia. The proteolytic, phospholipase A2 and amidolytic activities are assessed using colorimetric assays and the biological activities were analyzed in avian and mammalian neuromuscular preparations. L. annulata venom caused neuromuscular blockade in chick biventer cervicis (BC) preparations (40± 15% and 50± 3% of twitch reduction for 30 and 100 µg/ml, respectively; p < 0.05) following 120 incubation; 10 µg/ml of venom did not induce blockade. There was a mild reduction in contracture response to exogenous acetylcholine (110 µM) in BC preparations exposed to 10 and 30 µg of venom/ml (∼4% and ∼32% of reduction, respectively, p > 0.05, n = 4) compared to basal values whereas the highest concentration (100 µg/ml) abolished it after 120 min. The venom caused a significant reduction in contracture response elicited by KCl (∼58 and ∼90 of reduction for 30 and 100 µg/ml, respectively, p < 0.05, n = 4). In mouse phrenic nerve-diaphragm (PND) preparations, L. annulata venom induced a progressive muscle membrane depolarization [from -85.9 ± 1.6 mV (t0) to -72.2 ± 2.9 mV (t120), p < 0.05, n = 4); the postsynaptic receptors remained functional as shown by carbachol-induced depolarization. The morphological analyses showed a concentration-dependent number of pathological states in muscle fibers from both BC and PND preparations pre-exposed to venom. The venom showed high proteolytic activity and low phospholipase A2 activity; there was no evidence for serine protease activity. These results indicate that the neuromuscular effect induced by L. annulata venom resulted from damaged muscle fibers that lead to the blockade of twitches response. The findings suggest that the myotoxicity might be related to the presence of metalloproteases in this venom.


Assuntos
Junção Neuromuscular/efeitos dos fármacos , Venenos de Serpentes/toxicidade , Animais , Galinhas , Colubridae , Masculino , Camundongos
20.
Rev. biol. trop ; 69(2)jun. 2021.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387647

RESUMO

Abstract Introduction: Rhinella schneideri is a toad widely distributed in South America and its poison is characterized by inducing cardiotoxicity and neurotoxicity. Objective: In this work, we investigated pharmacological strategies to attenuate the peripheral neurotoxicity induced by R. schneideri poison in avian neuromuscular preparation. Methods: The experiments were carried out using isolated chick biventer cervicis preparation subjected to field stimulation for muscle twitches recordings or exposed to acetylcholine and potassium chloride for contracture responses. Results: Poison (10 μg/ml) produced complete neuromuscular blockade in chick biventer cervicis preparation within approximately 70 min incubation (times for 50 and 90 % blockade: 15 ± 3 min and 40 ± 2 min, respectively; P < 0.05, N= 5); contracture responses to exogenous acetylcholine and KCl were unaffected by poison indicating no specificity with postsynaptic receptors or myotoxicity, respectively. Poison (10 μg/ml)-induced neuromuscular blockade was not prevented by heparin (5 and 150 IU/ml) under pre- or post-treatment conditions. Incubation at low temperature (23-25 °C) abolished the neuromuscular blockade; after raising the temperature to 37 °C, the complete neuromuscular blockade was slightly slower than that seen in preparations directly incubated at 37 °C (times for 50 and 90 % blockade: 23 ± 2 min and 60 ± 2.5 min, respectively; P < 0.05, N= 4). Neostigmine (3.3 μM) did not reverse the neuromuscular blockade in BC preparation whereas 3,4-diaminopyridine (91.6 μM) produced a partial and sustained reversal of the twitch responses (29 ± 7.8 % of maximal reversal reached in approximately 40 min incubation; P < 0.05, N= 4). Conclusions: R. schneideri poison induces potent peripheral neurotoxicity in vitro which can be partially reversible by 3,4-diaminopyridine.


Resumen Introducción: Rhinella schneideri está ampliamente distribuida en Suramérica y su veneno es caracterizado por inducir cardiotoxicidad y neurotoxicidad. Objetivo: En este trabajo, investigamos estrategias farmacológicas para atenuar la neurotoxicidad periférica inducida por el veneno de R. schneideri en preparaciones neuromusculares de aves. Métodos: Los experimentos fueron realizados usando preparaciones de biventer cervicis de pollos sometidas a estimulación de campo para el registro de las contracciones musculares o expuestas a la acetilcolina y al cloruro de potasio para la respuesta contractural. Resultados: El veneno (10 µg/ml) provocó un bloqueo neuromuscular completo en las preparaciones después de aproximadamente 70 min de incubación (tiempos para 50 y 90 % de bloqueo: 15 ± 3 min y 40 ± 2 min, respectivamente; P < 0.05, N = 5); las contracturas en respuesta a la acetilcolina y el KCl exógenos no fueron afectadas por el veneno, indicando que no hay una interacción especifica con receptores postsinápticos o miotoxicidad respectivamente. El bloqueo neuromuscular causado por el veneno (10 µg/ml) no fue prevenido por la heparina (5 y 150 UI/ml) bajo condiciones pre y post-tratamiento. La incubación a bajas temperaturas (23-25 ºC) abolió el bloqueo neuromuscular; después de aumentar la temperatura a 37 ºC, el bloqueo neuromuscular total fue levemente más lento que el visto en preparaciones directamente incubadas a 37 ºC (tiempos para 50 y 90 % de bloqueo: 23 ± 2 min y 60 ± 2.5 min, respectivamente; P < 0.05, N= 4). Neostigmina (3.3 µM) no revirtió el bloqueo neuromuscular, mientras que 3.4-diaminopiridina (91.6 µM) produjo una reversión parcial y sostenida de las respuestas neuromusculares (29 ± 7.8 % de la reversión máxima alcanzada en aproximadamente 40 min de incubación; P < 0.05, N = 4). Conclusiones: El veneno de R. schneideri indujo neurotoxicidad periférica potente in vitro, el cual puede ser revertido por 3.4-diaminopiridina.


Assuntos
Animais , Bufo marinus , Bloqueio Neuromuscular , Aves , Brasil
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa