RESUMO
Magnetic nanoparticles (NPs) have attracted great attention owing to their applications in the biomedical field. In the present work, maghemite (γFe2O3) NPs of 6.5 nm were prepared using a sonochemical method and used to prepare magnetic beads through silanization with 3-aminopropyltrimethoxysilane (APTS). Subsequently, amino groups in the resulting APTS-γFe2O3 beads were converted to carboxylic acid (CARB-γFe2O3) through the succinic anhydride reaction, as confirmed by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and dynamic light scattering (DLS) measurements. The size of these beads was measured as 12 nm and their hydrodynamic diameter as 490 nm, using TEM analysis and DLS, respectively. The CARB-γFe2O3 beads were further functionalized by immobilizing rabbit antibodies on their surfaces; the immobilization was confirmed by flow cytometry and ionic strength. The samples were further characterized by Mössbauer spectroscopy and DC magnetization measurements. Studies on magnetic relaxivities showed that magnetic beads present great potential for application in MR imaging.
Assuntos
Anticorpos/metabolismo , Compostos Férricos/síntese química , Microesferas , Animais , Ácidos Carboxílicos/química , Difusão Dinâmica da Luz , Compostos Férricos/química , Fluorescência , Imageamento por Ressonância Magnética , Magnetismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Propilaminas/química , Coelhos , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Eletricidade Estática , Vibração , Difração de Raios XRESUMO
This work was developed with an aqueous suspension of maghemite nanoparticles and colloidal emulsions with nanoparticles of magnetite. The nanoparticles were synthesized by co-precipitation method. The first was the magnetic emulsion nanoparticles of maghemite dispersed in the aqueous extract obtained from the leaf embauba (Cecropia Obtusifolia), whose tree is native to Central and South America. Thereby achieving the magnetic fluid extract embauba stabilized with ionic buffer solution pH 7.4. A second emulsion was prepared with colloidal magnetite nanoparticles with surfaces previously coated with oleic acid as a means of dispersing and using the oil extracted from in nature seed Andiroba (Carapa Guianensis), tree of the Brazilian Amazon. These new magnetic fluids the nanoparticles were characterized by Photoacoustic spectroscopy (PAS) to determine the coating layer of molecules on the surfaces of nanoparticles. In aqueous ionic magnetic fluid Cecropia Obtusifolia (MFCO) chlorogenic acid contributes to the electron density in the presence of four groups alcohols, a ketone group and a carboxylic group. In magnetic fluid-based oil andiroba MFAD PAS spectra show that oleic acid molecules are tightly linked on the surface of the nanoparticles.
Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Compostos Orgânicos/química , Óleos de Plantas/síntese química , Soluções/síntese química , Campos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Teste de MateriaisRESUMO
Magnetic nanocomposites based on maghemite nanoparticles supported (ex situ route) on styrene- divinilbenzene (Sty-DVB) copolymer templates were produced and characterized for their structure and morphology. The as-produced nanocomposites were further chemically-treated with different oxidant agents and surface-coated with stearic acid. X-ray diffraction and transmission electron microscopy data show that the incorporated nanoparticles are preserved despite the aggressive chemical treatments employed. From the dynamical susceptibility measurements performed on the nanocomposites, the values of the saturation magnetization (76 emu/g) and the effective magnetic anisotropy (1.7 × 104 J/m³) were obtained, in excellent agreement with the values reported in the literature for maghemite. This finding strongly supports the preservation of the magnetic properties of the supported nanosized maghemite throughout the entire samples' processing.
RESUMO
Iron oxide nanoparticles, probably magnetite, as-prepared and dispersed in Copaiba oil were studied by Mössbauer spectroscopy using two different spectrometers: with a low velocity resolution (512 channels) for measurements at 295 and 21K and with a high velocity resolution (4096 channels) for measurements at 295 and 90K. The fitting of all measured spectra demonstrated that usual models applied to fit Mössbauer spectra of magnetite and maghemite particles were not suitable. Therefore, the recorded spectra were fitted using a large number of spectral components on the basis of better quality of the fit and linearity of differential spectra. The number of components obtained for the better fit appeared to be different for spectra measured with a low and a high velocity resolution. However, these results demonstrated differences of Mössbauer parameters for iron oxide nanoparticles as-prepared and dispersed in Copaiba oil at applied temperatures. The effect of Copaiba oil molecules on Mössbauer parameters may be a result of the interactions of polar molecules such as kaurinic acid with nanoparticles' surface.
Assuntos
Óleos de Plantas/química , Espectroscopia de Mossbauer/métodos , Ácidos/química , Óxido Ferroso-Férrico/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Difração de Raios XRESUMO
Photoacoustic spectroscopy (PAS) has revolutionized the fields of biological, environmental, and agricultural sciences. It is a very simple, sensitive, and non-destructive technique that allows the determination of optical properties of bio-samples. The in vivo chlorophylls of the leaf have a recorded maximum absorption peak at 675 nm as against 665 nm of the in vitro chlorophylls. The intensity of purple pigmentation in leaves of Blepharocalyx salicifolius (Kunt) O. Berg, is inversely correlated to the soil moisture levels, leaf water content and leaf water potentials. The applicability of PAS to biological samples was discussed. It allows the validation of existing emission models which are important for atmospheric process. A portable device for photoacoustic spectroscopy of plants and other photosynthetic tissues, cells and organelles is provided. Further, there is provided a method to measure photosynthesis of such tissues, cells and organelles.
Assuntos
Myrtaceae/química , Técnicas Fotoacústicas/métodos , Absorção , Folhas de Planta/química , Espectrofotometria Infravermelho , TemperaturaRESUMO
Photoacoustic spectroscopy was used to investigate magnetic nanocomposites incorporating nanosized maghemite particles into styrene-divinylbenzene copolymer template. Typical photoacoustic features were observed in bands C, S and L in the wavelength region of 300-1000 nm. The relative intensity of band-C scaled with the nominal concentration of nanosized maghemite incorporated into the polymeric template whereas the lowest relative intensity of band-S was found in the sample in which the template polymerization took place in the presence of the highest polar-like reaction medium. X-ray diffraction and transmission electron microscopy were used to characterize the magnetic nanosized phase as maghemite, with average particle diameter of 6.9 nm (sample Est34), 7.0 nm (sample H30), and 7.9 nm (sample Em15).
Assuntos
Compostos Férricos/química , Nanocompostos/química , Técnicas Fotoacústicas/métodos , Nanocompostos/ultraestrutura , Tamanho da Partícula , Análise Espectral , Temperatura , Difração de Raios XRESUMO
The chemical stability of magnetic particles is of great importance for their applications in medicine and biotechnology. The most challenging problem in physics of disordered systems of magnetic nanoparticles is the investigation of their dynamic properties. The chemical coprecipitation process was used to synthesize spherical magnetite nanoparticles of 14 nm. The as-prepared magnetite nanoparticles have been aged in the matrix. Magnetic properties and aging effect were studied by Mössbauer spectroscopy at temperatures ranging from 77 to 300 K, and X-ray diffraction. At room temperature, the Mössbauer spectrum showed superparamagnetic behavior of the particles, while well-defined sextets were observed at 77K, indicating a blocked regime. The superparamagnetic magnetite nanoparticles can be used as microbead biosensors.