Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799946

RESUMO

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA não Traduzido/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Glucocorticoides/farmacologia , Humanos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , RNA Longo não Codificante/genética
3.
Results Probl Cell Differ ; 70: 375-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348115

RESUMO

The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Ciclo Celular/genética , Divisão Celular , Neoplasias/genética , Neoplasias/patologia , Cromatina , Regulação da Expressão Gênica
4.
Results Probl Cell Differ ; 70: 339-373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348114

RESUMO

Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Fenótipo , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Cromatina
5.
Biochem Mol Biol Educ ; 49(4): 588-597, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939256

RESUMO

Next Generation Sequencing (NGS) has become an important tool in the biological sciences and has a growing number of applications across medical fields. Currently, few undergraduate programs provide training in the design and implementation of NGS applications. Here, we describe an inquiry-based laboratory exercise for a college-level molecular biology laboratory course that uses real-time MinION deep sequencing and bioinformatics to investigate characteristic genetic variants found in cancer cell-lines. The overall goal for students was to identify non-small cell lung cancer (NSCLC) cell-lines based on their unique genomic profiles. The units described in this laboratory highlight core principles in multiplex PCR primer design, real-time deep sequencing, and bioinformatics analysis for genetic variants. We found that the MinION device is an appropriate, feasible tool that provides a comprehensive, hands-on NGS experience for undergraduates. Student evaluations demonstrated increased confidence in using molecular techniques and enhanced understanding of NGS concepts. Overall, this exercise provides a pedagogical tool for incorporating NGS approaches in the teaching laboratory as way of enhancing students' comprehension of genomic sequence analysis. Further, this NGS lab module can easily be added to a variety of lab-based courses to help undergraduate students learn current DNA sequencing methods with limited effort and cost.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/genética , Biologia Computacional/educação , Laboratórios/normas , Biologia Molecular/educação , Mutação , Sequenciamento por Nanoporos/métodos , Estudantes/estatística & dados numéricos , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
6.
Cells ; 9(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183271

RESUMO

Dendritic cells (DCs) increase their metabolic dependence on glucose and glycolysis to support their maturation, activation-associated cytokine production, and T-cell stimulatory capacity. We have previously shown that this increase in glucose metabolism can be initiated by both Toll-like receptor (TLR) and C-type lectin receptor (CLR) agonists. In addition, we have shown that the TLR-dependent demand for glucose is partially satisfied by intracellular glycogen stores. However, the role of glycogen metabolism in supporting CLR-dependent DC glycolytic demand has not been formally demonstrated. In this work, we have shown that DCs activated with fungal-associated ß-glucan ligands exhibit acute glycolysis induction that is dependent on glycogen metabolism. Furthermore, glycogen metabolism supports DC maturation, inflammatory cytokine production, and priming of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in response to both TLR- and CLR-mediated activation. These data support a model in which different classes of innate immune receptors functionally converge in their requirement for glycogen-dependent glycolysis to metabolically support early DC activation. These studies provide new insight into how DC immune effector function is metabolically regulated in response to diverse inflammatory stimuli.


Assuntos
Células Dendríticas/metabolismo , Glicogênio/metabolismo , Glicólise/imunologia , Imunidade Inata/imunologia , Lectinas Tipo C/metabolismo , Receptores Toll-Like/metabolismo , Humanos
7.
Mol Cancer Res ; 18(10): 1443-1452, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554601

RESUMO

The thyroid hormone receptor beta (TRß), a key regulator of cellular growth and differentiation, is frequently dysregulated in cancers. Diminished expression of TRß is noted in thyroid, breast, and other solid tumors and is correlated with more aggressive disease. Restoration of TRß levels decreased tumor growth supporting the concept that TRß could function as a tumor suppressor. Yet, the TRß tumor suppression transcriptome is not well delineated and the impact of TRß is unknown in aggressive anaplastic thyroid cancer (ATC). Here, we establish that restoration of TRß expression in the human ATC cell line SW1736 (SW-TRß) reduces the aggressive phenotype, decreases cancer stem cell populations and induces cell death in a T3-dependent manner. Transcriptomic analysis of SW-TRß cells via RNA sequencing revealed distinctive expression patterns induced by ligand-bound TRß and revealed novel molecular signaling pathways. Of note, liganded TRß repressed multiple nodes in the PI3K/AKT pathway, induced expression of thyroid differentiation markers, and promoted proapoptotic pathways. Our results further revealed the JAK1-STAT1 pathway as a novel, T3-mediated, antitumorigenic pathway that can be activated in additional ATC lines. These findings elucidate a TRß-driven tumor suppression transcriptomic signature, highlight unexplored therapeutic options for ATC, and support TRß activation as a promising therapeutic option in cancers. IMPLICATIONS: TRß-T3 induced a less aggressive phenotype and tumor suppression program in anaplastic thyroid cancer cells revealing new potential therapeutic targets.


Assuntos
Carcinoma Anaplásico da Tireoide/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genes Supressores de Tumor , Humanos
8.
J Leukoc Biol ; 106(6): 1325-1335, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31509298

RESUMO

Dendritic cells (DCs) activated via TLR ligation experience metabolic reprogramming, in which the cells are heavily dependent on glucose and glycolysis for the synthesis of molecular building blocks essential for maturation, cytokine production, and the ability to stimulate T cells. Although the TLR-driven metabolic reprogramming events are well documented, fungal-mediated metabolic regulation via C-type lectin receptors such as Dectin-1 and Dectin-2 is not clearly understood. Here, we show that activation of DCs with fungal-associated ß-glucan ligands induces acute glycolytic reprogramming that supports the production of IL-1ß and its secretion subsequent to NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. This acute glycolytic induction in response to ß-glucan ligands requires spleen tyrosine kinase signaling in a TLR-independent manner, suggesting now that different classes of innate immune receptors functionally induce conserved metabolic responses to support immune cell activation. These studies provide new insight into the complexities of metabolic regulation of DCs immune effector function regarding cellular activation associated with protection against fungal microbes.


Assuntos
Células Dendríticas/metabolismo , Interleucina-1beta/biossíntese , Quinase Syk/metabolismo , Receptores Toll-Like/metabolismo , beta-Glucanas/metabolismo , Animais , Células Dendríticas/imunologia , Glicólise , Lectinas Tipo C/metabolismo , Ligantes , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Quinase Syk/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa