RESUMO
Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.
Assuntos
Arabidopsis/genética , Genes de Plantas , Invenções , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Solanum lycopersicum/citologia , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Xilema/genéticaRESUMO
Nitrogen is an essential macronutrient for plant growth and basic metabolic processes. The application of nitrogen-containing fertilizer increases yield, which has been a substantial factor in the green revolution1. Ecologically, however, excessive application of fertilizer has disastrous effects such as eutrophication2. A better understanding of how plants regulate nitrogen metabolism is critical to increase plant yield and reduce fertilizer overuse. Here we present a transcriptional regulatory network and twenty-one transcription factors that regulate the architecture of root and shoot systems in response to changes in nitrogen availability. Genetic perturbation of a subset of these transcription factors revealed coordinate transcriptional regulation of enzymes involved in nitrogen metabolism. Transcriptional regulators in the network are transcriptionally modified by feedback via genetic perturbation of nitrogen metabolism. The network, genes and gene-regulatory modules identified here will prove critical to increasing agricultural productivity.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Transcrição Gênica , Agricultura/métodos , Agricultura/tendências , Alelos , Arabidopsis/metabolismo , Retroalimentação Fisiológica , Genótipo , Mutação , Nitratos/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Assuntos
Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Biossíntese de Proteínas , Solanum/fisiologia , Transcriptoma , Biomassa , Mudança Climática , Produtos Agrícolas , Variação Genética , Metaboloma , Fotossíntese , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Polirribossomos , RNA Mensageiro/genética , RNA de Plantas/genética , Solanum/anatomia & histologia , Solanum/genética , Solanum/crescimento & desenvolvimentoRESUMO
Halophile-specific enzymes have wide-ranging industrial and commercial applications. Despite their importance, there is a paucity of available halophile whole-genome sequences. Here, we report the draft genome sequences of 16 diverse salt-tolerant strains of bacteria and archaea isolated from a variety of high-salt environments.
RESUMO
Plant xylem cells conduct water and mineral nutrients. Although most plant cells are totipotent, xylem cells are unusual and undergo terminal differentiation. Many genes regulating this process are well characterized, including the Vascular-related NAC Domain 7 (VND7), MYB46, and MYB83 transcription factors, which are proposed to act in interconnected feedforward loops (FFLs). Less is known regarding the molecular mechanisms underlying the terminal transition to xylem cell differentiation. Here, we generate whole-root and single-cell data, which demonstrate that VND7 initiates sharp switching of root cells to xylem cell identity. Based on these data, we identified 4 candidate VND7 downstream target genes capable of generating this switch. Although MYB46 responds to VND7 induction, it is not among these targets. This system provides an important model to study the emergent properties that may give rise to totipotency relative to terminal differentiation and reveals xylem cell subtypes.
Assuntos
Ativação Transcricional/fisiologia , Xilema/metabolismo , Diferenciação Celular , PlantasRESUMO
Flooding due to extreme weather threatens crops and ecosystems. To understand variation in gene regulatory networks activated by submergence, we conducted a high-resolution analysis of chromatin accessibility and gene expression at three scales of transcript control in four angiosperms, ranging from a dryland-adapted wild species to a wetland crop. The data define a cohort of conserved submergence-activated genes with signatures of overlapping cis regulation by four transcription factor families. Syntenic genes are more highly expressed than nonsyntenic genes, yet both can have the cis motifs and chromatin accessibility associated with submergence up-regulation. Whereas the flexible circuitry spans the eudicot-monocot divide, the frequency of specific cis motifs, extent of chromatin accessibility, and degree of submergence activation are more prevalent in the wetland crop and may have adaptive importance.