Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(10): 2109-2118, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691322

RESUMO

Loss and/or deterioration of refuelling habitats have caused population declines in many migratory bird species but whether this results from unequal mortality among individuals varying in migration traits remains to be shown. Based on 13 years of body mass and size data of great knots (Calidris tenuirostris) at a stopover site of the Yellow Sea, combined with resightings of individuals marked at this stopover site along the East Asian-Australasian Flyway, we assessed year to year changes in annual apparent survival rates, and how apparent survival differed between migration phenotypes (i.e. migration timing and fuel stores). The measurements occurred over a period of habitat loss and/or deterioration in this flyway. We found that the annual apparent survival rates of great knots rapidly declined from 2006 to 2018, late-arriving individuals with small fuel stores exhibiting the lowest apparent survival rate. There was an advancement in mean arrival date and an increase in the mean fuel load of stopping birds over the study period. Our results suggest that late-arriving individuals with small fuel loads were selected against. Thus, habitat loss and/or deterioration at staging sites may cause changes in the composition of migratory phenotypes at the population-level.


Assuntos
Migração Animal , Charadriiformes , Animais , Aves , Ecossistema
2.
Proc Biol Sci ; 280(1761): 20130325, 2013 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23760637

RESUMO

Sea-level rise (SLR) will greatly alter littoral ecosystems, causing habitat change and loss for coastal species. Habitat loss is widely used as a measurement of the risk of extinction, but because many coastal species are migratory, the impact of habitat loss will depend not only on its extent, but also on where it occurs. Here, we develop a novel graph-theoretic approach to measure the vulnerability of a migratory network to the impact of habitat loss from SLR based on population flow through the network. We show that reductions in population flow far exceed the proportion of habitat lost for 10 long-distance migrant shorebirds using the East Asian-Australasian Flyway. We estimate that SLR will inundate 23-40% of intertidal habitat area along their migration routes, but cause a reduction in population flow of up to 72 per cent across the taxa. This magnifying effect was particularly strong for taxa whose migration routes contain bottlenecks-sites through which a large fraction of the population travels. We develop the bottleneck index, a new network metric that positively correlates with the predicted impacts of habitat loss on overall population flow. Our results indicate that migratory species are at greater risk than previously realized.


Assuntos
Migração Animal , Aves , Modelos Teóricos , Animais , Australásia , Ecossistema , Oceanos e Mares , Dinâmica Populacional
3.
Mov Ecol ; 9(1): 32, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120657

RESUMO

BACKGROUND: In-flight conditions are hypothesized to influence the timing and success of long-distance migration. Wind assistance and thermal uplift are thought to reduce the energetic costs of flight, humidity, air pressure and temperature may affect the migrants' water balance, and clouds may impede navigation. Recent advances in animal-borne long-distance tracking enable evaluating the importance of these factors in determining animals' flight altitude. METHODS: Here we determine the effects of wind, humidity, temperature, cloud cover, and altitude (as proxy for climbing costs and air pressure) on flight altitude selection of two long-distance migratory shorebirds, far eastern curlew (Numenius madagascariensis) and whimbrel (Numenius phaeopus). To reveal the predominant drivers of flight altitude selection during migration we compared the atmospheric conditions at the altitude the birds were found flying with conditions elsewhere in the air column using conditional logistic mixed effect models. RESULTS: Our results demonstrate that despite occasional high-altitude migrations (up to 5550 m above ground level), our study species typically forego flying at high altitudes, limiting climbing costs and potentially alleviating water loss and facilitating navigation. While mainly preferring migrating at low altitude, notably in combination with low air temperature, the birds also preferred flying with wind support to likely reduce flight costs. They avoided clouds, perhaps to help navigation or to reduce the risks from adverse weather. CONCLUSIONS: We conclude that the primary determinant of avian migrant's flight altitude selection is a preference for low altitude, with wind support as an important secondary factor. Our approach and findings can assist in predicting climate change effects on migration and in mitigating bird strikes with air traffic, wind farms, power lines, and other human-made structures.

4.
Nat Commun ; 8: 14895, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406155

RESUMO

Migratory animals are threatened by human-induced global change. However, little is known about how stopover habitat, essential for refuelling during migration, affects the population dynamics of migratory species. Using 20 years of continent-wide citizen science data, we assess population trends of ten shorebird taxa that refuel on Yellow Sea tidal mudflats, a threatened ecosystem that has shrunk by >65% in recent decades. Seven of the taxa declined at rates of up to 8% per year. Taxa with the greatest reliance on the Yellow Sea as a stopover site showed the greatest declines, whereas those that stop primarily in other regions had slowly declining or stable populations. Decline rate was unaffected by shared evolutionary history among taxa and was not predicted by migration distance, breeding range size, non-breeding location, generation time or body size. These results suggest that changes in stopover habitat can severely limit migratory populations.


Assuntos
Migração Animal , Charadriiformes , Ecossistema , Oceanos e Mares , Animais , Aves , Cruzamento , China , Meio Ambiente , Atividades Humanas , Dinâmica Populacional , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa