Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 15(3): 413-24, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24420650

RESUMO

α-Conotoxin MII (α-CTxMII) is a 16-residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2-Cys8 and Cys3-Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand-binding affinity, homology models of the heteropentameric α3ß2-nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3- and ß2-subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3ß2-nAChR for α-CTxMII with ACh bound to the receptor, and this was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs.


Assuntos
Acetilcolina/metabolismo , Conotoxinas/metabolismo , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/química , Caramujo Conus/metabolismo , Bases de Dados de Proteínas , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Antagonistas Nicotínicos/química , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/química , Alinhamento de Sequência , Eletricidade Estática
2.
J Phys Chem B ; 117(9): 2653-61, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23336579

RESUMO

α-Conotoxin MII (α-CTxMII) is a potent and selective peptide antagonist of neuronal nicotinic acetylcholine receptors (nAChR's). Studies have shown that His9 and His12 are significant determinants of toxin binding affinity for nAChR, while Glu11 may dictate differential toxin affinity between nAChR isoforms. The protonation state of these histidine residues and therefore the charge on the α-CTx may contribute to the observed differences in binding affinity and selectivity. In this study, we assess the pH dependence of the protonation state of His9 and His12 by (1)H NMR spectroscopy and constant pH molecular dynamics (CpHMD) in α-CTxMII, α-CTxMII[E11A], and the triple mutant, α-CTxMII[N5R:E11A:H12K]. The E11A mutation does not significantly perturb the pKa of His9 or His12, while N5R:E11A:H12K results in a significant decrease in the pKa value of His9. The pKa values predicted by CpHMD simulations are in good agreement with (1)H NMR spectroscopy, with a mean absolute deviation from experiment of 0.3 pKa units. These results support the use of CpHMD as an efficient and inexpensive predictive tool to determine pKa values and structural features of small peptides critical to their function.


Assuntos
Conotoxinas/química , Histidina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa