RESUMO
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the DMD gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the DMD reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients. Large animal models and exon skipping evaluation are essential to facilitate ASO development together with a deeper understanding of dystrophinopathies. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, we generated a Yucatan miniature pig model of DMD with an exon 52 deletion mutation equivalent to one of the most common mutations seen in patients. Exon 52-deleted mRNA expression and dystrophin deficiency were confirmed in the skeletal and cardiac muscles of DMD pigs. Accordingly, dystrophin-associated proteins failed to be recruited to the sarcolemma. The DMD pigs manifested early disease onset with severe bodywide skeletal muscle degeneration and with poor growth accompanied by a physical abnormality, but with no obvious cardiac phenotype. We also demonstrated that in primary DMD pig skeletal muscle cells, the genetically engineered exon-52 deleted pig DMD gene enables the evaluation of exon 51 or 53 skipping with PMO and its advanced technology, peptide-conjugated PMO. The results show that the DMD pigs developed here can be an appropriate large animal model for evaluating in vivo exon skipping efficacy.
Assuntos
Distrofina/genética , Éxons , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Animais , Animais Geneticamente Modificados , Dependovirus/genética , Modelos Animais de Doenças , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo , Feminino , Deleção de Genes , Masculino , Fibras Musculares Esqueléticas/patologia , Técnicas de Transferência Nuclear , Oligonucleotídeos Antissenso/genética , Sarcolema/metabolismo , Suínos , Porco MiniaturaRESUMO
Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions.
Assuntos
Ataxia Telangiectasia/patologia , Modelos Animais de Doenças , Animais , Animais Geneticamente Modificados , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Feminino , Estudos de Associação Genética , Humanos , Masculino , Mutação , Técnicas de Transferência Nuclear , Células de Purkinje/patologia , SuínosRESUMO
CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.
Assuntos
Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Suínos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Aminopeptidases/genética , Aminopeptidases/uso terapêutico , Serina Proteases/genética , Serina Proteases/uso terapêutico , Fenótipo , Convulsões/tratamento farmacológicoRESUMO
Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.
Assuntos
Modelos Animais de Doenças , Neurofibromatose 1 , Neurofibromina 1/metabolismo , Suínos , Animais , Manchas Café com Leite , Éxons/genética , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/genética , Gânglios Espinais/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Canais Iônicos , Aprendizagem , Masculino , Memória , Mutação , Neurofibroma , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/fisiologia , Transdução de SinaisRESUMO
Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/- pigs were generated. Subsequent breeding of heterozygotes produced LDLR-/- pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/- pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR-/- pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.
Assuntos
Aterosclerose/genética , Marcação de Genes , Hipercolesterolemia/genética , Receptores de LDL/genética , Animais , Animais Geneticamente Modificados , Aorta/metabolismo , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Dieta , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Loci Gênicos , Genótipo , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Receptores de LDL/metabolismo , Suínos , Porco Miniatura , Fatores de TempoRESUMO
Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in TP53 (which encodes p53) that is orthologous to one commonly found in humans (R175H in people, R167H in pigs). TP53(R167H/R167H) mutant pigs primarily developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles. CT and MRI imaging data effectively detected developing tumors, which were validated by histopathological evaluation after necropsy. Molecular genetic analyses confirmed that these animals expressed the R167H mutant p53, and evaluation of tumors revealed characteristic chromosomal instability. Together, these results demonstrated that TP53(R167H/R167H) pigs represent a large-animal tumor model that replicates the human condition. Our data further suggest that this model will be uniquely suited for developing clinically relevant, noninvasive imaging approaches to facilitate earlier detection, diagnosis, and treatment of human cancers.