Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509617

RESUMO

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Assuntos
Catepsina B , Lipopolissacarídeos , Masculino , Humanos , Camundongos , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Ensaios de Triagem em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
2.
Part Fibre Toxicol ; 17(1): 40, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787867

RESUMO

BACKGROUND: Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. RESULTS: The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. CONCLUSIONS: Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.


Assuntos
Poluentes Atmosféricos/toxicidade , Incineração , Nanotubos de Carbono/química , Material Particulado/toxicidade , Plásticos/toxicidade , Brônquios , Linhagem Celular , Dano ao DNA , Células Epiteliais , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
Chem Res Toxicol ; 32(12): 2382-2397, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31657553

RESUMO

Iron oxide nanoparticles (IONP) have recently surged in production and use in a wide variety of biomedical and environmental applications. However, their potential long-term health effects, including carcinogenesis, are unknown. Limited research suggests IONP can induce genotoxicity and neoplastic transformation associated with particle dissolution and release of free iron ions. "Safe by design" strategies involve the modification of particle physicochemical properties to affect subsequent adverse outcomes, such as an amorphous silica coating to reduce IONP dissolution and direct interaction with cells. We hypothesized that long-term exposure to a specific IONP (nFe2O3) would induce neoplastic-like cell transformation, which could be prevented with an amorphous silica coating (SiO2-nFe2O3). To test this hypothesis, human bronchial epithelial cells (Beas-2B) were continuously exposed to a 0.6 µg/cm2 administered a dose of nFe2O3 (∼0.58 µg/cm2 delivered dose), SiO2-nFe2O3 (∼0.55 µg/cm2 delivered dose), or gas metal arc mild steel welding fumes (GMA-MS, ∼0.58 µg/cm2 delivered dose) for 6.5 months. GMA-MS are composed of roughly 80% iron/iron oxide and were recently classified as a total human carcinogen. Our results showed that low-dose/long-term in vitro exposure to nFe2O3 induced a time-dependent neoplastic-like cell transformation, as indicated by increased cell proliferation and attachment-independent colony formation, which closely matched that induced by GMA-MS. This transformation was associated with decreases in intracellular iron, minimal changes in reactive oxygen species (ROS) production, and the induction of double-stranded DNA damage. An amorphous silica-coated but otherwise identical particle (SiO2-nFe2O3) did not induce this neoplastic-like phenotype or changes in the parameters mentioned above. Overall, the presented data suggest the carcinogenic potential of long-term nFe2O3 exposure and the utility of an amorphous silica coating in a "safe by design" hazard reduction strategy, within the context of a physiologically relevant exposure scenario (low-dose/long-term), with model validation using GMA-MS.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Dióxido de Silício/química , Carcinógenos/química , Proliferação de Células/efeitos dos fármacos , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Compostos Férricos/química , Humanos , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo
4.
Nano Lett ; 18(10): 6500-6508, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30211561

RESUMO

Fibroblast stem cells or stemlike cells (FSCs) are proposed to play a pivotal role in extracellular matrix (ECM) regeneration by serving as a key source of ECM-producing fibroblasts. We developed a mechanism-based in vitro model for fibrogenicity testing of nanomaterials based on their ability to induce FSCs. Using a FSC-enriched fibroblast focus model to mimic in vivo fibrogenic response, we demonstrated a dose-dependent increase in fibroblast focus formation and collagen production by primary lung fibroblasts treated with multiwalled carbon nanotubes (MWCNTs). The focus-forming cells exhibited stem properties as indicated by stem cell markers expression, sphere formation, and ALDH activity assays. Inhibition of ALDH activity diminished the focus and sphere formation as well as collagen production. In vivo animal studies supported the in vitro findings and indicated the potential utility of FSC-based assays as a rapid screening tool for fibrogenicity testing of nanomaterials. This study also unveils a novel mechanism of nanotube-induced fibrogenesis through ALDH-dependent FSC activation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Nanotubos de Carbono/química , Células-Tronco/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/citologia , Humanos , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Células-Tronco/citologia
5.
Lung Cancer ; 181: 107258, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245409

RESUMO

OBJECTIVES: A cure for cancer is out of reach for most patients due to chemoresistance. Cancer-associated fibroblasts (CAFs) play a vital role in cancer chemoresistance, but detailed understanding of the process particularly in chemoresistant lung cancer is lacking. In this study, we investigated programmed death-ligand 1 (PDL-1) as a potential biomarker for CAF-induced chemoresistance and evaluated its role and the underlying mechanisms of chemoresistance in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: A systemic search of gene expression profiles of multiple tissues in NSCLC was carried out to determine the expression intensities of traditional fibroblast biomarkers and CAF-secreted protumorigenic cytokines. PDL-1 expression in CAFs was analyzed by ELISA, Western blotting, and flow cytometry. Human cytokine array was used to identify specific cytokines secreted from CAFs. Role of PDL-1 in NSCLC chemoresistance was assessed using CRISPR/Cas9 knockdown and various functional assays including MTT, cell invasion, sphere formation, and cell apoptosis. In vivo experiments were conducted using a co-implantation xenograft mouse model with live cell imaging and immunohistochemistry. RESULTS: We demonstrated that chemotherapy-stimulated CAFs promoted tumorigenic and stem cell-like properties of NSCLC cells, which contribute to their chemoresistance. Subsequently, we revealed that PDL-1 expression is upregulated in chemotherapy-treated CAFs and is associated with poor prognosis. Silencing PDL-1 expression suppressed CAFs' ability to promote stem cell-like properties and invasiveness of lung cancer cells, favoring chemoresistance. Mechanistically, an upregulation of PDL-1 in chemotherapy-treated CAFs led to an increase in hepatocyte growth factor (HGF) secretion, which stimulates cancer progression, cell invasion, and stemness of lung cancer cells, while inhibiting apoptosis. CONCLUSION: Our results show that PDL-1-positive CAFs modulate stem cell-like properties of NSCLC cells by secreting elevated HGF, thereby promoting chemoresistance. Our finding supports PDL-1 in CAFs as a chemotherapy response biomarker and as a drug delivery and therapeutic target for chemoresistant NSCLC.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Fibroblastos Associados a Câncer/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fibroblastos , Citocinas/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
6.
Sci Rep ; 13(1): 8220, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217524

RESUMO

Tetrazolium reduction and resazurin assays are the mainstay of routine in vitro toxicity batteries. However, potentially erroneous characterization of cytotoxicity and cell proliferation can arise if verification of baseline interaction of test article with method employed is neglected. The current investigation aimed to demonstrate how interpretation of results from several standard cytotoxicity and proliferation assays vary in dependence on contributions from the pentose phosphate pathway (PPP). Non-tumorigenic Beas-2B cells were treated with graded concentrations of benzo[a]pyrene (B[a]P) for 24 and 48 h prior to cytotoxicity and proliferation assessment with commonly used MTT, MTS, WST1, and Alamar Blue assays. B[a]P caused enhanced metabolism of each dye assessed despite reductions in mitochondrial membrane potential and was reversed by 6-aminonicotinamide (6AN)-a glucose-6-phosphate dehydrogenase inhibitor. These results demonstrate differential sensitivity of standard cytotoxicity assessments on the PPP, thus (1) decoupling "mitochondrial activity" as an interpretation of cellular formazan and Alamar Blue metabolism, and (2) demonstrating the implicit requirement for investigators to sufficiently verify interaction of these methods in routine cytotoxicity and proliferation characterization. The nuances of method-specific extramitochondrial metabolism must be scrutinized to properly qualify specific endpoints employed, particularly under the circumstances of metabolic reprogramming.


Assuntos
6-Aminonicotinamida , Via de Pentose Fosfato
7.
Mol Cell Biol ; 40(2)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31658996

RESUMO

Chemotherapy resistance and tumor relapse are the major contributors to low patient survival, and both have been largely attributed to cancer stem-like cells (CSCs) or tumor-initiating cells (TICs). Moreover, most conventional therapies are not effective against CSCs, which necessitates the discovery of CSC-specific biomarkers and drug targets. Here, we demonstrated that the embryonic transcription factor SOX9 is an important regulator of acquired chemoresistance in non-small-cell lung cancer (NSCLC). Our results show that SOX9 expression is elevated in NSCLC cells after treatment with the chemotherapeutic cisplatin and that overexpression of SOX9 correlates with worse overall survival in lung cancer patients. We further demonstrated that SOX9 knockdown increases cellular sensitivity to cisplatin, whereas its overexpression promotes drug resistance. Moreover, this transcription factor promotes the stem-like properties of NSCLC cells and increases their aldehyde dehydrogenase (ALDH) activity, which was identified to be the key mechanism of SOX9-induced chemoresistance. Finally, we showed that ALDH1A1 is a direct transcriptional target of SOX9, based on chromatin immunoprecipitation and luciferase reporter assays. Taken together, our novel findings on the role of the SOX9-ALDH axis support the use of this CSC regulator as a prognostic marker of cancer chemoresistance and as a potential drug target for CSC therapy.


Assuntos
Família Aldeído Desidrogenase 1/genética , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Retinal Desidrogenase/genética , Fatores de Transcrição SOX9/genética , Células A549 , Família Aldeído Desidrogenase 1/metabolismo , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
ACS Biomater Sci Eng ; 6(9): 5290-5304, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455278

RESUMO

Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts. This was indicated by increased expression of stem cell markers (e.g., CD44 and ABCG2) and fibrogenic markers (e.g., collagen and α-SMA) in CNT-exposed cells. These cells also showed increased sphere formation, anoikis resistance, and aldehyde dehydrogenase (ALDH) activities, which are characteristics of stem cells. Mechanistic studies revealed sex-determining region Y-box 2 (SOX2), a self-renewal associated transcription factor, as a key driver of FSC acquisition and fibrogenesis. Upregulation and colocalization of SOX2 and COL1 were found in the fibrotic lung tissues of CNT-exposed mice via oropharyngeal aspiration after 56 days. The knockdown of SOX2 by gene silencing abrogated the fibrogenic and FSC-inducing effects of CNTs. Chromatin immunoprecipitation assays identified SOX2-binding sites on COL1A1 and COL1A2, indicating SOX2 as a transcription factor in collagen synthesis. SOX2 was also found to play a critical role in TGF-ß-induced fibrogenesis through its collagen- and FSC-inducing effects. Since many nanomaterials are known to induce TGF-ß, our findings that SOX2 regulate FSCs and fibrogenesis may have broad implications on the fibrogenic mechanisms and treatment strategies of various nanomaterial-induced fibrotic disorders.


Assuntos
Nanotubos de Carbono , Fibrose Pulmonar , Animais , Fibroblastos , Pulmão , Camundongos , Nanotubos de Carbono/efeitos adversos , Fibrose Pulmonar/induzido quimicamente , Células-Tronco
9.
Environ Sci Nano ; 6(7): 2152-2170, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31372228

RESUMO

Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs. The chronic CNM-exposed cells exhibited CSC-like properties as indicated by 3D spheroid formation, anoikis resistance, and CSC markers expression. Mechanistic studies revealed specific self-renewal and epithelial-mesenchymal transition (EMT)-related transcription factors that are involved in the cellular transformation process. Pathway analysis of gene signaling networks supports the role of SOX2 and SNAI1 signaling in CNM-mediated transformation. These findings support the potential carcinogenicity of high aspect ratio CNMs and identified molecular targets and signaling pathways that may contribute to the disease development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa