Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 79(2): 397-408, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31448388

RESUMO

Fusarium head blight (FHB) is a devastating disease of wheat heads. It is caused by several species from the genus Fusarium. Several endophytic fungi also colonize wheat spikes asymptomatically. Pathogenic and commensal fungi share and compete for the same niche and thereby influence plant performance. Understanding the natural dynamics of the fungal community and how the pre-established species react to pathogen attack can provide useful information on the disease biology and the potential use of some of these endophytic organisms in disease control strategies. Fungal community composition was assessed during anthesis as well as during FHB attack in wheat spikes during 2016 and 2017 in two locations. Community metabarcoding revealed that endophyte communities are dominated by basidiomycete yeasts before anthesis and shift towards a more opportunistic ascomycete-rich community during kernel development. These dynamics are interrupted when Fusarium spp. colonize wheat spikes. The Fusarium pathogens appear to exclude other fungi from floral tissues as they are associated with a reduction in community diversity, especially in the kernel which they colonize rapidly. Similarly, the presence of several endophytes was negatively correlated with Fusarium spp. and linked with spikes that stayed healthy despite exposure to the pathogen. These endophytes belonged to the genera Cladosporium, Itersonillia and Holtermanniella. These findings support the hypothesis that some naturally occurring endophytes could outcompete or prevent FHB and represent a source of potential biological control agents in wheat.


Assuntos
Endófitos/fisiologia , Fusarium/fisiologia , Micobioma/fisiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia
2.
J Fungi (Basel) ; 8(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448576

RESUMO

The fungal endophyte Penicillium olsonii ML37 is a biocontrol agent of Fusarium head blight in wheat (caused by Fusarium graminearum), which has shown a limited direct inhibition of fungal growth in vitro. We used RNA-seq and LC-MS/MS analyses to elucidate metabolic interactions of the three-way system Penicillium-wheat-Fusarium in greenhouse experiments. We demonstrated that P. olsonii ML37 colonises wheat spikes and transiently activates plant defence mechanisms, as pretreated spikes show a faster and stronger expression of the defence metabolism during the first 24 h after pathogen inoculation. This effect was transient and the expression of the same genes was lower in the pathogen-infected spikes than in those infected by P. olsonii alone. This response to the endophyte includes the transcriptional activation of several WRKY transcription factors. This early activation is associated with a reduction in FHB symptoms and significantly lower levels of the F. graminearum metabolites 15-acetyl-DON and culmorin. An increase in the Penicillium-associated metabolite asperphanamate confirms colonisation by the endophyte. Our results suggest that the mode of action used by P. olsonii ML37 is via a local defence activation in wheat spikes, and that this fungus has potential as a novel biological alternative in wheat disease control.

3.
ISME J ; 14(10): 2381-2394, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514118

RESUMO

Arbuscular mycorrhizal fungi (AMF) are of great ecological importance because of their effects on plant growth. Closely related genotypes of the same AMF species coexist in plant roots. However, almost nothing is known about the molecular interactions occurring during such coexistence. We compared in planta AMF gene transcription in single and coinoculation treatments with two genetically different isolates of Rhizophagus irregularis in symbiosis independently on three genetically different cassava genotypes. Remarkably few genes were specifically upregulated when the two fungi coexisted. Strikingly, almost all of the genes with an identifiable putative function were known to be involved in mating in other fungal species. Several genes were consistent across host plant genotypes but more upregulated genes involved in putative mating were observed in host genotype (COL2215) compared with the two other host genotypes. The AMF genes that we observed to be specifically upregulated during coexistence were either involved in the mating pheromone response, in meiosis, sexual sporulation or were homologs of MAT-locus genes known in other fungal species. We did not observe the upregulation of the expected homeodomain genes contained in a putative AMF MAT-locus, but observed upregulation of HMG-box genes similar to those known to be involved in mating in Mucoromycotina species. Finally, we demonstrated that coexistence between the two fungal genotypes in the coinoculation treatments explained the number of putative mating response genes activated in the different plant host genotypes. This study demonstrates experimentally the activation of genes involved in a putative mating response and represents an important step towards the understanding of coexistence and sexual reproduction in these important plant symbionts.


Assuntos
Glomeromycota , Micorrizas , Fungos , Glomeromycota/genética , Micorrizas/genética , Raízes de Plantas , Reprodução , Simbiose/genética
4.
ISME J ; 14(6): 1333-1344, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32066875

RESUMO

Most land plants form symbioses with arbuscular mycorrhizal fungi (AMF). Diversity of AMF increases plant community productivity and plant diversity. For decades, it was known that plants trade carbohydrates for phosphate with their fungal symbionts. However, recent studies show that plant-derived lipids probably represent the most essential currency of exchange. Understanding the regulation of plant genes involved in the currency of exchange is crucial to understanding stability of this mutualism. Plants encounter many different AMF genotypes that vary greatly in the benefit they confer to plants. Yet the role that fungal genetic variation plays in the regulation of this currency has not received much attention. We used a high-resolution phylogeny of one AMF species (Rhizophagus irregularis) to show that fungal genetic variation drives the regulation of the plant fatty acid pathway in cassava (Manihot esculenta); a pathway regulating one of the essential currencies of trade in the symbiosis. The regulation of this pathway was explained by clearly defined patterns of fungal genome-wide variation representing the precise fungal evolutionary history. This represents the first demonstrated link between the genetics of AMF and reprogramming of an essential plant pathway regulating the currency of exchange in the symbiosis. The transcription factor RAM1 was also revealed as the dominant gene in the fatty acid plant gene co-expression network. Our study highlights the crucial role of variation in fungal genomes in the trade of resources in this important symbiosis and also opens the door to discovering characteristics of AMF genomes responsible for interactions between AMF and cassava that will lead to optimal cassava growth.


Assuntos
Fungos/genética , Fungos/fisiologia , Variação Genética , Manihot/microbiologia , Micorrizas/genética , Simbiose , Evolução Molecular , Abastecimento de Alimentos , Fungos/classificação , Fungos/isolamento & purificação , Genoma Fúngico , Manihot/fisiologia , Micorrizas/classificação , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Filogenia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
5.
ISME J ; 13(5): 1226-1238, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30647457

RESUMO

Arbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, most of the plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organization during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation has a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype × genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.


Assuntos
Glomeromycota/genética , Manihot/genética , Manihot/microbiologia , Micorrizas/genética , Simbiose/genética , Genótipo , Análise de Sequência de RNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa