Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Circ Res ; 130(2): 184-199, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34886684

RESUMO

BACKGROUND: Impairment of cellular cholesterol trafficking is at the heart of atherosclerotic lesions formation. This involves egress of cholesterol from the lysosomes and 2 lysosomal proteins, the NPC1 (Niemann-Pick C1) and NPC2 that promotes cholesterol trafficking. However, movement of cholesterol out the lysosome and how disrupted cholesterol trafficking leads to atherosclerosis is unclear. As the Wnt ligand, Wnt5a inhibits the intracellular accumulation of cholesterol in multiple cell types, we tested whether Wnt5a interacts with the lysosomal cholesterol export machinery and studied its role in atherosclerotic lesions formation. METHODS: We generated mice deleted for the Wnt5a gene in vascular smooth muscle cells. To establish whether Wnt5a also protects against cholesterol accumulation in human vascular smooth muscle cells, we used a CRISPR/Cas9 guided nuclease approach to generate human vascular smooth muscle cells knockout for Wnt5a. RESULTS: We show that Wnt5a is a crucial component of the lysosomal cholesterol export machinery. By increasing lysosomal acid lipase expression, decreasing metabolic signaling by the mTORC1 (mechanistic target of rapamycin complex 1) kinase, and through binding to NPC1 and NPC2, Wnt5a senses changes in dietary cholesterol supply and promotes lysosomal cholesterol egress to the endoplasmic reticulum. Consequently, loss of Wnt5a decoupled mTORC1 from variations in lysosomal sterol levels, disrupted lysosomal function, decreased cholesterol content in the endoplasmic reticulum, and promoted atherosclerosis. CONCLUSIONS: These results reveal an unexpected function of the Wnt5a pathway as essential for maintaining cholesterol homeostasis in vivo.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína C1 de Niemann-Pick/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína Wnt-5a/genética
2.
Neuropathol Appl Neurobiol ; : e12952, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124360

RESUMO

AIMS: Limb-girdle congenital myasthenic syndrome (LG-CMS) is a genetically heterogeneous disorder characterized by muscle weakness and fatigability. The LG-CMS gene DPAGT1 codes for an essential enzyme of the glycosylation pathway, a posttranslational modification mechanism shaping the structure and function of proteins. In DPAGT1-related LG-CMS, reduced glycosylation of the acetylcholine receptor (AChR) reduces its localization at the neuromuscular junction (NMJ), and results in diminished neuromuscular transmission. LG-CMS patients also show tubular aggregates on muscle biopsy, but the origin and potential contribution of the aggregates to disease development are not understood. Here, we describe two LG-CMS patients with the aim of providing a molecular diagnosis and to shed light on the pathways implicated in tubular aggregate formation. METHODS: Following clinical examination of the patients, we performed next-generation sequencing (NGS) to identify the genetic causes, analysed the biopsies at the histological and ultrastructural levels, investigated the composition of the tubular aggregates, and performed experiments on protein glycosylation. RESULTS: We identified novel pathogenic DPAGT1 variants in both patients, and pyridostigmine treatment quantitatively improved muscle force and function. The tubular aggregates contained proteins of the sarcoplasmic reticulum (SR) and structurally conformed to the aggregates observed in tubular aggregate myopathy (TAM). TAM arises from overactivation of the plasma membrane calcium channel ORAI1, and functional studies on muscle extracts from our LG-CMS patients evidenced abnormal ORAI1 glycosylation. CONCLUSIONS: We expand the genetic variant spectrum of LG-CMS and provide a genotype/phenotype correlation for pathogenic DPAGT1 variants. The discovery of ORAI1 hypoglycosylation in our patients highlights a physiopathological link between LG-CMS and TAM.

3.
Mol Ther ; 30(2): 868-880, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371181

RESUMO

Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação para Baixo , Dinamina II/genética , Mamíferos , Camundongos , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
FASEB J ; 35(5): e21597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908663

RESUMO

Aging is a gradual biological process characterized by a decrease in cellular and organism functions. Aging-related processes involve changes in the expression and activity of several proteins. Here, we identified the transmembrane protease serine 11a (TMPRSS11a) as a new age-specific protein that plays an important role in skin wound healing. TMPRSS11a levels increased with age in rodent and human skin and gingival samples. Strikingly, overexpression of TMPRSS11a decreased cell migration and spreading, and inducing cellular senescence. Mass spectrometry, bioinformatics, and functional analyses revealed that TMPRSS11a interacts with integrin ß1 through an RGD sequence contained within the C-terminal domain and that this motif was relevant for cell migration. Moreover, TMPRSS11a was associated with cellular senescence, as shown by overexpression and downregulation experiments. In agreement with tissue-specific expression of TMPRSS11a, shRNA-mediated downregulation of this protein improved wound healing in the skin, but not in the skeletal muscle of old mice, where TMPRSS11a is undetectable. Collectively, these findings indicate that TMPRSS11a is a tissue-specific factor relevant for wound healing, which becomes elevated with aging, promoting cellular senescence and inhibiting cell migration and skin repair.


Assuntos
Envelhecimento/patologia , Movimento Celular , Fibroblastos/patologia , Proteínas de Membrana/metabolismo , Serina Proteases/metabolismo , Pele/patologia , Cicatrização , Adolescente , Adulto , Idoso , Envelhecimento/metabolismo , Animais , Proliferação de Células , Fibroblastos/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Humanos , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Serina Proteases/genética , Transdução de Sinais , Pele/metabolismo , Adulto Jovem
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805973

RESUMO

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) form a clinical continuum associating progressive muscle weakness with additional multi-systemic anomalies of the bones, skin, spleen, and platelets. TAM/STRMK arises from excessive extracellular Ca2+ entry due to gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1. Currently, no treatment is available. Here we assessed the therapeutic potential of ORAI1 downregulation to anticipate and reverse disease development in a faithful mouse model carrying the most common TAM/STRMK mutation and recapitulating the main signs of the human disorder. To this aim, we crossed Stim1R304W/+ mice with Orai1+/- mice expressing 50% of ORAI1. Systematic phenotyping of the offspring revealed that the Stim1R304W/+Orai1+/- mice were born with a normalized ratio and showed improved postnatal growth, bone architecture, and partly ameliorated muscle function and structure compared with their Stim1R304W/+ littermates. We also produced AAV particles containing Orai1-specific shRNAs, and intramuscular injections of Stim1R304W/+ mice improved the skeletal muscle contraction and relaxation properties, while muscle histology remained unchanged. Altogether, we provide the proof-of-concept that Orai1 silencing partially prevents the development of the multi-systemic TAM/STRMK phenotype in mice, and we also established an approach to target Orai1 expression in postnatal tissues.


Assuntos
Transtornos Plaquetários , Dislexia , Ictiose , Miopatias Congênitas Estruturais , Proteína ORAI1 , Animais , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Cálcio/metabolismo , Dislexia/genética , Dislexia/metabolismo , Eritrócitos Anormais , Ictiose/genética , Ictiose/metabolismo , Camundongos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Miose , Fadiga Muscular , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fenótipo , Baço/anormalidades , Baço/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
6.
Neurogenetics ; 22(1): 33-41, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33405017

RESUMO

The nuclear envelope (NE) separates the nucleus from the cytoplasm in all eukaryotic cells. A disruption of the NE structure compromises normal gene regulation and leads to severe human disorders collectively classified as nuclear envelopathies and affecting skeletal muscle, heart, brain, skin, and bones. The ubiquitous NE component LAP1B is encoded by TOR1AIP1, and the use of an alternative start codon gives rise to the shorter LAP1C isoform. TOR1AIP1 mutations have been identified in patients with diverging clinical presentations such as muscular dystrophy, progressive dystonia with cerebellar atrophy, and a severe multi-systemic disorder, but the correlation between the mutational effect and the clinical spectrum remains to be determined. Here, we describe a novel TOR1AIP1 patient manifesting childhood-onset muscle weakness and contractures, and we provide clinical, histological, ultrastructural, and genetic data. We demonstrate that the identified TOR1AIP1 frameshift mutation leads to the selective loss of the LAP1B isoform, while the expression of LAP1C was preserved. Through comparative review of all previously reported TOR1AIP1 cases, we delineate a genotype/phenotype correlation and conclude that LAP1B-specific mutations cause a progressive skeletal muscle phenotype, while mutations involving a loss of both LAP1B and LAP1C isoforms induce a syndromic disorder affecting skeletal muscle, brain, eyes, ear, skin, and bones.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação/genética , Membrana Nuclear/genética , Isoformas de Proteínas/genética , Criança , Feminino , Mutação da Fase de Leitura/genética , Humanos , Masculino , Músculos/metabolismo , Músculos/patologia , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/genética , Fenótipo
7.
Hum Mol Genet ; 28(10): 1579-1593, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576443

RESUMO

Strict regulation of Ca2+ homeostasis is essential for normal cellular physiology. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling basal Ca2+ levels and intracellular Ca2+ store refilling, and abnormal SOCE severely impacts on human health. Overactive SOCE results in excessive extracellular Ca2+ entry due to dominant STIM1 or ORAI1 mutations and has been associated with tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). Both disorders are spectra of the same disease and involve muscle weakness, myalgia and cramps, and additional multi-systemic signs including miosis, bleeding diathesis, hyposplenism, dyslexia, short stature and ichthyosis. To elucidate the physiological consequences of STIM1 over-activation, we generated a murine model harboring the most common TAM/STRMK mutation and characterized the phenotype at the histological, ultrastructural, metabolic, physiological and functional level. In accordance with the clinical picture of TAM/STRMK, the Stim1R304W/+ mice manifested muscle weakness, thrombocytopenia, skin and eye anomalies and spleen dysfunction, as well as additional features not yet observed in patients such as abnormal bone architecture and immune system dysregulation. The murine muscles exhibited contraction and relaxation defects as well as dystrophic features, and functional investigations unraveled increased Ca2+ influx in myotubes. In conclusion, we provide insight into the pathophysiological effect of the STIM1 R304W mutation in different cells, tissues and organs and thereby significantly contribute to a deeper understanding of the pathomechanisms underlying TAM/STRMK and other human disorders involving aberrant Ca2+ homeostasis and affecting muscle, bones, platelets or the immune system.


Assuntos
Transtornos Plaquetários/genética , Dislexia/genética , Ictiose/genética , Transtornos de Enxaqueca/genética , Miose/genética , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Baço/anormalidades , Molécula 1 de Interação Estromal/genética , Animais , Transtornos Plaquetários/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Dislexia/fisiopatologia , Eritrócitos Anormais , Olho/metabolismo , Olho/patologia , Técnicas de Introdução de Genes , Humanos , Ictiose/patologia , Ictiose/fisiopatologia , Sistema Imunitário/patologia , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Transtornos de Enxaqueca/fisiopatologia , Miose/fisiopatologia , Fadiga Muscular/genética , Debilidade Muscular/genética , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/fisiopatologia , Proteína ORAI1/genética , Pele/metabolismo , Pele/patologia , Baço/fisiopatologia
8.
Ann Neurol ; 88(2): 274-282, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32386344

RESUMO

OBJECTIVE: Glycogen storage diseases (GSDs) are severe human disorders resulting from abnormal glucose metabolism, and all previously described GSDs segregate as autosomal recessive or X-linked traits. In this study, we aimed to molecularly characterize the first family with a dominant GSD. METHODS: We describe a dominant GSD family with 13 affected members presenting with adult-onset muscle weakness, and we provide clinical, metabolic, histological, and ultrastructural data. We performed exome sequencing to uncover the causative gene, and functional experiments in the cell model and on recombinant proteins to investigate the pathogenic effect of the identified mutation. RESULTS: We identified a heterozygous missense mutation in PYGM segregating with the disease in the family. PYGM codes for myophosphorylase, the enzyme catalyzing the initial step of glycogen breakdown. Enzymatic tests revealed that the PYGM mutation impairs the AMP-independent myophosphorylase activity, whereas the AMP-dependent activity was preserved. Further functional investigations demonstrated an altered conformation and aggregation of mutant myophosphorylase, and the concurrent accumulation of the intermediate filament desmin in the myofibers of the patients. INTERPRETATION: Overall, this study describes the first example of a dominant glycogen storage disease in humans, and elucidates the underlying pathomechanisms by deciphering the sequence of events from the PYGM mutation to the accumulation of glycogen in the muscle fibers. ANN NEUROL 2020;88:274-282.


Assuntos
Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Mutação/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
9.
Phys Chem Chem Phys ; 23(43): 24545-24549, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704576

RESUMO

We have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.


Assuntos
Peptídeos/química , Compostos de Boro/química , Colágeno/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Soluções , Espectrometria de Fluorescência , Viscosidade
10.
J Chem Inf Model ; 60(7): 3577-3586, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32525311

RESUMO

Dopamine clearance in the brain is controlled by the dopamine transporter (DAT), a protein residing in the plasma membrane, which drives reuptake of extracellular dopamine into presynaptic neurons. Studies have revealed that the ßγ subunits of heterotrimeric G proteins modulate DAT function through a physical association with the C-terminal region of the transporter. Regulation of neurotransmitter transporters by Gßγ subunits is unprecedented in the literature; therefore, it is interesting to investigate the structural details of this particular protein-protein interaction. Here, we refined the crystal structure of the Drosophila melanogaster DAT (dDAT), modeling de novo the N- and C-terminal domains; subsequently, we used the full-length dDAT structure to generate a comparative model of human DAT (hDAT). Both proteins were assembled with Gß1γ2 subunits employing protein-protein docking, and subsequent molecular dynamics simulations were run to identify the specific interactions governing the formation of the hDAT:Gßγ and dDAT:Gßγ complexes. A [L/F]R[Q/E]R sequence motif containing the residues R588 in hDAT and R587 in dDAT was found as key to bind the Gßγ subunits through electrostatic interactions with a cluster of negatively charged residues located at the top face of the Gß subunit. Alterations of DAT function have been associated with multiple devastating neuropathological conditions; therefore, this work represents a step toward better understanding DAT regulation by signaling proteins, allowing us to predict therapeutic target regions.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas de Drosophila/química , Drosophila melanogaster , Proteínas de Ligação ao GTP/química , Animais , Dopamina , Drosophila melanogaster/metabolismo , Simulação de Dinâmica Molecular
11.
Neuropathology ; 40(6): 559-569, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33073872

RESUMO

Tubular aggregate myopathy (TAM) is a progressive disorder characterized by muscle weakness, cramps, and myalgia. TAM clinically overlaps with Stormorken syndrome (STRMK), combining TAM with miosis, thrombocytopenia, hyposplenism, ichthyosis, short stature, and dyslexia. TAM and STRMK arise from gain-of-function mutations in STIM1 (stromal interaction molecule 1) or ORAI1, both encoding key regulators of Ca2+ homeostasis, and mutations in either gene result in excessive extracellular Ca2+ entry. The pathomechanistic similarities and differences between TAM and STRMK are only partially understood. Here we provide functional in vitro experiments demonstrating that STIM1 harboring the TAM D84G or the STRMK R304W mutation similarly cluster and exert a dominant effect on the wild-type protein. Both mutants recruit ORAI1 to the clusters, increase cytosolic Ca2+ levels, promote major nuclear import of the Ca2+ -dependent transcription factor NFAT (nuclear factor of activated T cells), and trigger the formation of circular membrane stacks. In conclusion, the analyzed TAM and STRMK mutations have a comparable impact on STIM1 protein function and downstream effects of excessive Ca2+ entry, highlighting that TAM and STRMK involve a common pathomechanism.


Assuntos
Transtornos Plaquetários/genética , Dislexia/genética , Ictiose/genética , Transtornos de Enxaqueca/genética , Miose/genética , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Baço/anormalidades , Molécula 1 de Interação Estromal/genética , Animais , Transtornos Plaquetários/metabolismo , Transtornos Plaquetários/patologia , Células Cultivadas , Dislexia/metabolismo , Dislexia/patologia , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/patologia , Humanos , Ictiose/metabolismo , Ictiose/patologia , Camundongos , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Miose/metabolismo , Miose/patologia , Fadiga Muscular/genética , Mutação , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1/metabolismo , Baço/metabolismo , Baço/patologia , Transfecção
12.
J Child Psychol Psychiatry ; 60(5): 545-554, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30648742

RESUMO

BACKGROUND: The aim of this study is to provide a better understanding of the central symptoms of DSM-5 posttraumatic stress disorder (PTSD) in children and adolescents from the perspective of the child and its caregiver. Identifying core symptoms of PTSD can help clinicians to understand what may be relevant targets for treatment. PTSD may present itself differently in children and adolescents compared to adults, and no study so far has investigated the DSM-5 PTSD conceptualization using network analysis. METHODS: The network structure of DSM-5 PTSD was investigated in a clinical sample of n = 475 self-reports of children and adolescents and n = 424 caregiver-reports using (a) regularized partial correlation models and (b) a Bayesian approach computing directed acyclic graphs (DAGs). RESULTS: (a) The 20 DSM-5 PTSD symptoms were positively connected within the self-report and the caregiver-report sample. The most central symptoms were negative trauma-related cognitions and persistent negative emotional state for the self-report and negative trauma-related cognitions, intrusive thoughts or memories and exaggerated startle response for the caregiver-report. (b) Similarly, symptoms in the negative alterations in cognitions and mood cluster (NACM) have emerged as key drivers of other symptoms in traumatized children and adolescents. CONCLUSIONS: As the symptoms in the DSM-5 NACM cluster were central in our regularized partial correlation networks and also appeared to be the driving forces in the DAGs, these might represent important symptoms within PTSD symptomatology and may offer key targets in PTSD treatment for children and adolescents.


Assuntos
Sintomas Afetivos/fisiopatologia , Interpretação Estatística de Dados , Visualização de Dados , Manual Diagnóstico e Estatístico de Transtornos Mentais , Trauma Psicológico/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adolescente , Teorema de Bayes , Criança , Feminino , Humanos , Masculino , Pais , Autorrelato
13.
J Environ Manage ; 244: 320-327, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129464

RESUMO

This paper examines the effectiveness of intrinsic and extrinsic motivations on the adoption intensity of sustainable agricultural practices (SAPs) among annual crop farmers in Chile. We use the farmers' attitude towards SAPs as a proxy of intrinsic motivation, while extrinsic motivation is represented by an economic incentive to promote the use of SAPs. The policy program we studied is administered by the Chilean Ministry of Agriculture under the name System of Incentives for the Agro-Environmental Sustainability of Degraded Soils (SIRSD-S. Sustainable behaviour was defined as the adoption of (1) minimum tillage, (2) improved fallow, (3) stubble incorporation, (4) use of manure, and (5) use of compost. A count model was estimated that showed that both sources of motivation, and the interaction between them, significantly predicted the adoption of SAPs. Farmers with low levels of intrinsic motivation depended largely on the SIRSD-S to adopt SAPs, while the incentive was ineffective for intrinsically motivated farmers who adopted more SAPs regardless the presence of extrinsic motivation. Finally, the perception of risk of soil erosion and perceived behavioural control of this risk were found to play a positive role in the adoption of SAPs.


Assuntos
Fazendeiros , Motivação , Agricultura , Chile , Humanos , Inquéritos e Questionários
14.
Phys Chem Chem Phys ; 17(27): 17821-7, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26089196

RESUMO

Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

15.
Clin Nucl Med ; 49(9): 864-865, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934462

RESUMO

ABSTRACT: A 47-year-old man with a history of metastatic non-clear cell left renal cell carcinoma, unclassified subtype, status post left radical nephrectomy 4 years prior, and treated with immunotherapy for approximately 2½ years, presented for 18 F-FDG PET/CT exam 7 months after immunotherapy was stopped. A contrast-enhanced CT exam performed 3 weeks prior demonstrated a new small bowel intussusception in the left upper quadrant. The PET/CT demonstrated focal FDG uptake in the segment of small bowel involved in the intussusception. Pathology from small bowel resection demonstrated metastatic renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Fluordesoxiglucose F18 , Intussuscepção , Neoplasias Renais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Intussuscepção/diagnóstico por imagem , Tomografia Computadorizada por Raios X
16.
JCI Insight ; 9(6)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516893

RESUMO

Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.


Assuntos
Transtornos Plaquetários , Dislexia , Ictiose , Transtornos de Enxaqueca , Miopatias Congênitas Estruturais , Proteína ORAI1 , Baço , Animais , Camundongos , Cálcio/metabolismo , Eritrócitos Anormais , Transtornos de Enxaqueca/tratamento farmacológico , Miose/tratamento farmacológico , Miose/genética , Miose/metabolismo , Fadiga Muscular , Miopatias Congênitas Estruturais/tratamento farmacológico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Baço/metabolismo , Baço/anormalidades
17.
Prev Med Rep ; 31: 102102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36590443

RESUMO

Previous studies have found increases in nonfatal opioid overdoses during the COVID-19 pandemic, which created difficult conditions for people with substance use disorders. We assessed changes in nonfatal opioid-related overdoses in Florida during the onset of the COVID-19 pandemic. Emergency medical service data was obtained from the Florida Department of Health. Naloxone administration with documented improvement was used as a proxy for nonfatal opioid-related overdoses. Age-adjusted rates were estimated per 100,000 population for April-September 2020 (n = 9,377) and compared to the same time period during 2019 (n = 6,765) using rate ratios. Age-adjusted rates were estimated by sex, race/ethnicity, and metro/nonmetro county classification, as well as county-level measures of medications for opioid use disorder (MOUD) availability, rates of COVID-19 deaths, and unemployment during 2020. The age-adjusted rate of nonfatal opioid-related overdoses increased from 32.41 (95 % CL: 31.64-33.19) during 2019 to 45.35 (95 % CL: 44.42-46.27) during 2020 (RR = 1.40; 95 % CL: 1.36-1.44). The rate for males increased most in metro counties (RR = 1.47, 95 % CL: 1.41-1.53); the rate for females increased most in nonmetro counties (RR = 1.51, 95 % CL: 1.10-2.06). The largest increases were observed among Hispanics (males: RR = 1.56, 95 % CL: 1.37-1.78; females: RR = 1.44, 95 % CL: 1.14-1.81), counties with no MOUD treatment options (RR = 1.66, 95 % CL: 1.14-2.44) and counties with the lowest rates of buprenorphine prescribers (RR = 1.70, 95 % CL: 1.29-2.22). Nonfatal opioid-related overdoses increased in Florida during the first six months of the COVID-19 pandemic. Expanding access to services that support treatment and recovery is critical to addressing the ongoing opioid crisis in Florida.

18.
World J Biol Psychiatry ; 24(1): 58-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532037

RESUMO

OBJECTIVES: Major depressive disorder (MDD) involves peripheral low-grade pro-inflammatory activity. This multi-biomarker case-control study characterises the proinflammatory status in MDD beyond C-reactive protein (CRP) and Interleukin (IL)-6 levels through investigating concomitant alterations of immunoregulatory biomolecules. METHODS: In 20 female MDD patients and 24 non-depressed women, circulating levels of CRP, IL-6, cortisol, selected endocannabinoids (ECs; anandamide [AEA], 2-arachidonylglycerol [2-AG]), and N-acylethanolamines (NAEs), as well as circulating cell-free mitochondrial DNA (ccf-mtDNA) were measured. RESULTS: We found higher serum CRP and plasma AEA levels in MDD and a positive association of CRP and AEA levels with current depressive symptoms. Blood levels of cortisol, ccf-mtDNA, 2-AG, and NAEs did depend on MDD diagnosis nor correlated with the severity of current depressive symptoms. CRP correlated positively with AEA, and AEA showed positive associations with 2-AG and NAE levels. CONCLUSIONS: In this study, female MDD outpatients with mild to moderate disorder severity did not substantially differ from non-depressed controls in the resting levels of multiple immunoregulatory markers in peripheral blood. Instead of investigating resting levels, future research on the role of inflammatory activity in MDD should focus on investigating the reactivity of pathways modulating the immune system upon exposure to physical and psychosocial stressors.


Assuntos
Ácidos Nucleicos Livres , Transtorno Depressivo Maior , Humanos , Feminino , Hidrocortisona , Transtorno Depressivo Maior/genética , Estudos de Casos e Controles , Endocanabinoides , Pacientes Ambulatoriais , Proteína C-Reativa/análise , Biomarcadores , Interleucina-6 , DNA Mitocondrial
19.
Microbiol Spectr ; : e0039923, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707451

RESUMO

Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.

20.
Clin Psychol Eur ; 4(1): e6133, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36397746

RESUMO

Background: Emergency Medical Services personnel (EMSP) are recurrently exposed to chronic and traumatic stressors in their occupation. Effective coping with occupational stressors plays a key role in enabling their health and overall well-being. In this study, we examined the habitual use of coping strategies in EMSP and analyzed associations of coping with the personnel's health and well-being. Method: A total of N = 106 German Red Cross EMSP participated in a cross-sectional survey involving standardized questionnaires to report habitual use of different coping strategies (using the Brief-COPE), their work-related stress, work-related self-efficacy, job satisfaction, as well as mental and physical stress symptoms. Results: A confirmatory factor analysis corroborated seven coping factors which have been identified in a previous study among Italian emergency workers. Correlation analyses indicated the coping factor "self-criticism" is associated with more work-related stress, lower job satisfaction, and higher depressive, posttraumatic, and physical stress symptoms. Although commonly viewed as adaptive coping, the coping factors "support/venting", "active coping/planning", "humor", "religion", and "positive reappraisal" were not related to health and well-being in EMSP. Exploratory correlation analyses suggested that only "acceptance" was linked to better well-being and self-efficacy in EMSP. Conclusion: Our results emphasize the need for in-depth investigation of adaptive coping in EMSP to advance occupation-specific prevention measures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa