RESUMO
Colistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.
Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Suínos , Bovinos , Ovinos , Colistina/farmacologia , Gado , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Galinhas/microbiologia , Bactérias , Proteínas de Escherichia coli/genéticaRESUMO
BACKGROUND: Currently, Candida auris is among the most serious emerging pathogens that can be associated with nosocomial infections and outbreaks in intensive care units. Clinicians must be able to identify and manage it quickly. OBJECTIVE: Here, we report for the first time in Algeria seven cases of C. auris infection or colonisation. METHODS AND RESULTS: The strains were isolated from clinical sites including bronchial aspirates (n = 4), wound swabs (n = 1), urine sample (n = 1) and peritoneal fluid (n = 1), in patients admitted to the intensive care unit. Candida auris was identified both by MALDI-TOF and by sequencing the ITS region and the D1/D2 domain. Antifungal susceptibility testing was performed using the E-test method. Non-wildtype susceptibility was observed for five strains against fluconazole, itraconazole, voriconazole and caspofungin. Genotyping showed the presence of four clades (I-IV) in one hospital. CONCLUSIONS: Appropriate antifungal treatments with rapid and accurate microbial identification are the cornerstone for the management and control of C. auris infections.
Assuntos
Antifúngicos , Candidíase , Argélia/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candida auris , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: The emergence and diffusion of strains of pathogenic bacteria resistant to antibiotics constitutes a real public health challenge. Antibiotic resistance genes (ARGs) can be carried by both pathogenic and non-pathogenic bacteria, including commensal bacteria from the human microbiota, which require special monitoring in the fight against antimicrobial resistance. METHODS: We analyzed the proteomes of 335 new bacterial species from human microbiota to estimate its whole range of ARGs using the BLAST program against ARGs reference databases. RESULTS: We found 278 bacteria that harbor a total of 883 potential ARGs with the following distribution: 264 macrolides-lincosamides-streptogramin, 195 aminoglycosides, 156 tetracyclines, 58 ß-lactamases, 58 fosfomycin, 51 glycopeptides, 36 nitroimidazoles, 33 phenicols and 32 rifamycin. Furthermore, evolutionary analyses revealed the potential horizontal transfer with pathogenic bacteria involving mobile genetic elements such as transposase and plasmid. We identified many ARGs that may represent new variants in fosfomycin and ß-lactams resistance. CONCLUSION: These findings show that new bacterial species from human microbiota should be considered as an important reservoir of ARGs that can be transferred to pathogenic bacteria. In vitro analyses of their phenotypic potential are required to improve our understanding of the functional role of this bacterial community in the development of antibiotic resistance.
Assuntos
Bactérias/genética , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Genes Bacterianos/genética , Humanos , Microbiota/efeitos dos fármacosRESUMO
Over the past 25 years, the powerful combination of genome sequencing and bioinformatics analysis has played a crucial role in interpreting information encoded in bacterial genomes. High-throughput sequencing technologies have paved the way towards understanding an increasingly wide range of biological questions. This revolution has enabled advances in areas ranging from genome composition to how proteins interact with nucleic acids. This has created unprecedented opportunities through the integration of genomic data into clinics for the diagnosis of genetic traits associated with disease. Since then, these technologies have continued to evolve, and recently, long-read sequencing has overcome previous limitations in terms of accuracy, thus expanding its applications in genomics, transcriptomics and metagenomics. In this review, we describe a brief history of the bacterial genome sequencing revolution and its application in public health and molecular epidemiology. We present a chronology that encompasses the various technological developments: whole-genome shotgun sequencing, high-throughput sequencing, long-read sequencing. We mainly discuss the application of next-generation sequencing to decipher bacterial genomes. Secondly, we highlight how long-read sequencing technologies go beyond the limitations of traditional short-read sequencing. We intend to provide a description of the guiding principles of the 3rd generation sequencing applications and ongoing improvements in the field of microbial medical research.
Assuntos
Bactérias/genética , Genoma Bacteriano/genética , Animais , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Epidemiologia Molecular , Sequenciamento Completo do Genoma/métodosRESUMO
The colibactin island (pks) of Escherichia coli formed by 19 genes (55-Kb), encodes non-ribosomal peptide (NRP) and polyketide (PK) synthases, which allow the synthesis of colibactin, a suspected hybrid PK-NRP compound that causes damage to DNA in eukaryotic cells. The clbP, an unusual essential gene, is found in the operon structure with the clbS gene in the pks-encoded machinery. Interestingly, the clbP gene has been annotated as a ß-lactamase but no previous study has reported its ß-lactamase characteristics. In this study, we (i) investigated the ß-lactamase properties of the clbP gene in silico by analysing its phylogenetic relationship with bacterial ß-lactamase and peptidase enzymes, (ii) compared its three-dimensional (3D) protein structure with those of bacterial ß-lactamase proteins using the Phyr2 database and PyMOL software, and (iii) evaluated in vitro its putative enzymatic activities, including ß-lactamase, nuclease, and ribonuclease using protein expression and purification from an E. coli BL21 strain. In this study, we reveal a structural configuration of toxin/antitoxin systems in this island. Thus, similar to the toxin/antitoxin systems, the role of the clbP gene within the pks-island gene group appears as an antitoxin, insofar as it is responsible for the activation of the toxin, which is colibactin. In silico, our analyses revealed that ClbP belonged to the superfamily of ß-lactamase, class C. Furthermore, in vitro we were unable to demonstrate its ß-lactamase activity, likely due to the fact that the clbP gene requires co-expression with other genes, such as the genes present in the pks-island (19 genes). More research is needed to better understand its actions, particularly with regards to antibiotics, and to discover whether it has any additional functions due to the importance of this gene and its toxicity.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Genes vif , Filogenia , Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismoRESUMO
The increased exploitation of microbial sequencing methods has shed light on the high diversity of new microorganisms named Candidate Phyla Radiation (CPR). CPR are mainly detected via 16S rRNA/metabarcoding analyses or metagenomics and are found to be abundant in all environments and present in different human microbiomes. These microbes, characterized by their symbiotic/epiparasitic lifestyle with bacteria, are directly exposed to competition with other microorganisms sharing the same ecological niche. Recently, a rich repertoire of enzymes with antibiotic resistance activity has been found in CPR genomes by using an in silico adapted screening strategy. This reservoir has shown a high prevalence of putative beta-lactamase-encoding genes. We expressed and purified five putative beta-lactamase sequences having the essential domains and functional motifs from class A and class B beta-lactamase. Their enzymatic activities were tested against various beta-lactam substrates using liquid chromatography-mass spectrometry (LC-MS) and showed some beta-lactamase activity even in the presence of a beta-lactamase inhibitor. In addition, ribonuclease activity was demonstrated against RNA that was not inhibited by sulbactam and EDTA. None of these proteins could degrade single- and double-stranded-DNA. This study is the first to express and test putative CPR beta-lactamase protein sequences in vitro. Our findings highlight that the reduced genomes of CPR members harbor sequences encoding for beta-lactamases known to be multifunction hydrolase enzymes.
Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Bactérias/genética , Bactérias/metabolismo , Humanos , RNA Ribossômico 16S/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-LactamasRESUMO
Genome sequencing facilitates the study of bacterial taxonomy and allows the re-evaluation of the taxonomic relationships between species. Here, we aimed to analyze the draft genomes of four commensal Neisseria clinical isolates from the semen of infertile Lebanese men. To determine the phylogenetic relationships among these strains and other Neisseria spp. and to confirm their identity at the genomic level, we compared the genomes of these four isolates with the complete genome sequences of Neisseria gonorrhoeae and Neisseria meningitidis and the draft genomes of Neisseria flavescens, Neisseria perflava, Neisseria mucosa, and Neisseria macacae that are available in the NCBI Genbank database. Our findings revealed that the WGS analysis accurately identified and corroborated the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) species identities of the Neisseria isolates. The combination of three well-established genome-based taxonomic tools (in silico DNA-DNA Hybridization, Ortho Average Nucleotide identity, and pangenomic studies) proved to be relatively the best identification approach. Notably, we also discovered that some Neisseria strains that are deposited in databases contain many taxonomical errors. The latter is very important and must be addressed to prevent misdiagnosis and missing emerging etiologies. We also highlight the need for robust cut-offs to delineate the species using genomic tools.
Assuntos
Neisseria meningitidis , Neisseria , Masculino , Humanos , Filogenia , Neisseria/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , DNA , Genoma BacterianoRESUMO
Fosfomycin is a decades-old antibiotic, currently reused because of its activity against multidrug-resistant bacteria. Here, we used a combined in vitro/in silico approach to search for fosfomycin resistance determinants in 25 new bacterial species isolated from the human microbiota. Putative resistance genes were cloned into a susceptible Escherichia coli strain. MIC values increased from 1 µg/ml to 1,024 µg/ml. Here, we report a new family of potential chromosomal fosfomycin resistance genes, named fosM.
Assuntos
Fosfomicina , Microbiota , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana/genética , Fosfomicina/farmacologia , Humanos , Testes de Sensibilidade MicrobianaRESUMO
Antibiotic resistance genes exist naturally in various environments far from human usage. Here, we investigated multidrug-resistant Klebsiella pneumoniae, a common pathogen of chimpanzees and humans. We screened antibiotic-resistant K. pneumoniae from 48 chimpanzee stools and 38 termite mounds (n = 415 samples) collected in protected areas in Senegal. The microsatellite method was used to identify chimpanzee individuals (n = 13). Whole-genome sequencing was performed on K. pneumoniae complex isolates to identify antibiotic-resistant genes and characterize clones. We found a high prevalence of carbapenem-resistant K. pneumoniae among chimpanzee isolates (18/48 samples from 7/13 individuals) and ceftriaxone resistance among both chimpanzee individuals (19/48) and termite mounds (7/415 termites and 3/38 termite mounds). The blaOXA-48 and the blaKPC-2 genes were carried by international pOXA-48 and pKPC-2 plasmids, respectively. The ESBL plasmid carried blaCTX-M-15, blaTEM-1B, and blaOXA-1 genes. Genome sequencing of 56 isolates identified two major clones associated with hospital-acquired infections of K. pneumoniae (ST307 and ST147) in chimpanzees and termites, suggesting circulation of strains between the two species, as chimpanzees feed on termites. The source and selection pressure of these clones in this environment need to be explored.
Assuntos
Isópteros , Infecções por Klebsiella , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Células Clonais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Pan troglodytes , Plasmídeos , Senegal , beta-Lactamases/genéticaRESUMO
There is a discrepancy between antibiotic use in medicine and agriculture in the intertropical zone and frequency of antibiotic resistance in clinical bacteria in these countries. We provide evidence that glyphosate (a herbicide but also an antibiotic drug) could be a possible driver of antibiotic resistance in countries where this herbicide is widely used because of modification of the microbial environment. Emergence of resistance in bacteria and fungi is correlated with glyphosate use in the world over the last 40 years.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Bactérias , Glicina/análogos & derivados , Glicina/farmacologia , GlifosatoRESUMO
A 26-year-old girl with a longstanding colonization by Pandoraea nosoerga underwent liver-lung transplantation for cystic fibrosis (CF) in 2018. Her brother also suffering from CF was also colonized by P. nosoerga. Despite appropriate perioperative antibiotic therapy, she had post-transplant bacteremic pneumonia caused by extensively drug-resistant P. nosoerga. Drug repurposing was used to optimize treatment options. The cause of post-transplant contamination was studied by comparative whole-genome sequencing including pre- and post-transplant strains and her brother's strains. Post-transplant contamination appeared to be due to her own pre-transplant strain, emphasizing the urgent need to study and implement effective decontamination protocols before transplantation.
Assuntos
Fibrose Cística/cirurgia , Infecções por Bactérias Gram-Negativas/microbiologia , Transplante de Fígado/efeitos adversos , Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/microbiologia , Adulto , Antibacterianos/uso terapêutico , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , Burkholderiaceae/fisiologia , Evolução Fatal , Feminino , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/mortalidade , Humanos , Fígado/cirurgia , Pulmão/microbiologia , Pulmão/cirurgia , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/mortalidadeRESUMO
Candida auris is an emerging multiresistant pathogen causing nosocomial fungal infection. Specific detection and identification are necessary. Our goal is to develop a new qPCR system that enables rapid detection of C. auris, based on a GPI (glycosyl-phosphatidylinositol) protein-encoding gene. This system is reproducible and sensitive with a limit of detection of 13 C. auris CFU/qPCR reaction. The 100% specificity of this system is confirmed on 2073 clinical and environmental samples, 50 different bacterial species, and 9 Candida spp. (70 strains). This system is suitable to correctly identify C. auris infections and to trace its source.
Assuntos
Candida/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia Ambiental , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da EspécieRESUMO
We described three clinical cases of pyogenic liver abscess caused by hypervirulent Klebsiella pneumoniae (hvKp) successfully treated by prolonged antibiotherapy, in which one case was complicated by endophthalmitis. Whole genome sequencing helped to confirm the diagnosis of these hvKp strains, which belong to clonal complexes CC86 and CC23 and carried hvKp-associated genes (magA and/or rmpA). This syndrome is increasingly reported in France and Europe and raises questions about the source of infection.
Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Abscesso Hepático/microbiologia , Sequenciamento Completo do Genoma , Adulto , Idoso , França/epidemiologia , Genoma Bacteriano , Humanos , Infecções por Klebsiella/epidemiologia , Masculino , Pessoa de Meia-Idade , VirulênciaRESUMO
The objective of this study is to determine the acquisition of multidrug-resistant (MDR) bacteria and antibiotic resistance-encoding genes by French Hajj pilgrims and associated risk factors. Pilgrims traveling during the 2017 and 2018 Hajj were recruited. All pilgrims underwent two successive systematic nasopharyngeal and rectal swabs, pre- and post-Hajj. Specific culture media were used to screen for MDR bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant bacteria, and extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E). qPCR was used to identify antibiotic resistance-encoding genes from cultured isolates. Direct screening of genes encoding for colistin resistance (mcr-1, 2, 3, 4, 5, and 8) from nasopharyngeal and rectal swabs was performed using qPCR, and positive qPCR results were simultaneously tested by sequencing. There were 268 pilgrims included. The percentage of pilgrims acquiring MDR bacteria during the Hajj was 19.4%. A total of 81 strains were isolated (1 carbapenem-resistant Acinetobacter baumannii, 12 MRSA, and 68 ESBL-E). ESBL-E strains were found in rectal samples of 6.0% pilgrims pre-Hajj and of 16.4% pilgrims post-Hajj. Only 0.4% pilgrims were positive for CARB post-Hajj and 1.9% carried nasal MRSA pre- and post-Hajj. In addition, 23 (8.6%) post-Hajj rectal swabs were positive for mcr genes (19 mcr-1 gene and 4 mcr-4 gene). No significant association was found between co-factors and acquisition of MDR bacteria or mcr genes. MDR bacteria and genes are acquired by pilgrims during the Hajj mass gathering. Rationalization of antibiotic consumption and implementation of measures to prevent transmission of bacteria among pilgrims during the event are of paramount importance.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Nasofaringe/microbiologia , Reto/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Religião , Arábia Saudita , Viagem/estatística & dados numéricos , Adulto JovemRESUMO
Two novel bacteria species designated Marseille-Q1000T and Marseille-Q0999T were isolated from urine samples of patients in Sokoto, Northwest-Nigeria. They were Gram-positive bacteria and belong to two different genera, Bhargavaea and Dietzia. The genome size and G + C content of Marseille-Q1000T and Marseille-Q0999T were 3.07 and 3.51 Mbp with 53.8 and 71.0 mol% G + C content, respectively. The strains exhibited unique phenotypic and genomic features that are substantially different from previously known bacterial species with standing in nomenclature. On the basis of the phenotypic, phylogenetic and genomic characteristics, strains Marseille-Q0999T (= CSURQ0999 = DSM 112394) and Marseille-Q1000T (= CSURQ1000 = DSM 112384) were proposed as the type strains of Bhargavaea massiliensis sp. nov., and Dietzia massiliensis sp. nov., respectively.
Assuntos
Planococáceas , DNA Bacteriano/genética , Humanos , Nigéria , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
We aimed to assess the prevalence of pathogenic bacteria and resistance genes in rectal samples collected among homeless persons in Marseille, France. In February 2014 we enrolled 114 sheltered homeless adults who completed questionnaires and had rectal samples collected. Eight types of enteric bacteria and 15 antibiotic resistance genes (ARGs) were sought by real-time polymerase chain reaction (qPCR) performed directly on rectal samples. ARG-positive samples were further tested by conventional PCR and sequencing. We evidenced a 17.5% prevalence of gastrointestinal symptoms, a 9.6% prevalence of enteric pathogenic bacteria carriage, including Escherichia coli pathotypes (8.7%) and Tropheryma whipplei (0.9%). Only 2 persons carried blaCTX-M-15 resistance genes (1.8%), while other genes, including carbapenemase-encoding genes and colistin-resistance genes, (mcr-1 to mcr-6, mcr-8) were not detected. Our results suggest that sheltered homeless persons in Marseille do not have a high risk of harbouring gastrointestinal antibiotic resistant bacteria.
RESUMO
BackgroundFrance is a low prevalence country for colistin resistance. Molecular and epidemiological events contributing to the emergence of resistance to colistin, one of the 'last-resort' antibiotics to treat multidrug-resistant Gram-negative infections, are important to investigate.AimThis retrospective (2014 to 2017) observational study aimed to identify risk factors associated with acquisition of colistin-resistant Klebsiella pneumoniae (CRKP) in hospitals in Marseille, France, and to molecularly characterise clinical isolates.MethodsTo identify risk factors for CRKP, a matched-case-control (1:2) study was performed in two groups of patients with CRKP or colistin-susceptible K. pneumoniae respectively. Whole-genome-sequences (WGS) of CRKP were compared with 6,412 K. pneumoniae genomes available at the National Center for Biotechnology Information (NCBI).ResultsMultivariate analysis identified male sex and contact with a patient carrying a CRKP as significant independent factors (p < 0.05) for CRKP acquisition, but not colistin administration. WGS of nine of 14 CRKP clinical isolates belonged to the same sequence type (ST)307. These isolates were from patients who had been hospitalised in the same wards, suggesting an outbreak. Comparison of the corresponding strains' WGS to K. pneumoniae genomes in NCBI revealed that in chromosomal genes likely playing a role in colistin resistance, a subset of five specific mutations were significantly associated with ST307 (p < 0.001).ConclusionA ST307 CRKP clone was identified in this study, with specific chromosomal mutations in genes potentially implicated in colistin resistance. ST307 might have a propensity to be or become resistant to colistin, however confirming this requires further investigations.
Assuntos
Colistina , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Infecções por Klebsiella , Antibacterianos/farmacologia , Proteínas de Bactérias , Células Clonais , Colistina/farmacologia , Infecção Hospitalar/epidemiologia , Epidemias , França/epidemiologia , Hospitais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Masculino , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Fatores de RiscoRESUMO
Brevundimonas diminuta is rarely described in clinical specimens, never at the umbilical stump. Most of the reported cases are in patients with underlying pathologies. We must integrate this microorganism in the etiological agents of nosocomial infections, but much remains to be understood about its virulence. We present a case of umbilical stump infection (omphalitis) caused by B. diminuta, in a preterm and hypotrophic new-born and discuss the diagnosis of this bacterium and its role as responsible of nosocomial neonatal infections.
Assuntos
Caulobacteraceae , Infecção Hospitalar , Caulobacteraceae/genética , Infecção Hospitalar/diagnóstico , República Democrática do Congo , Humanos , Recém-Nascido de Baixo Peso , Recém-NascidoRESUMO
Multidrug-resistant Enterobacteriaceae (MRE) colonize the intestine asymptomatically from where they can breach into the bloodstream and cause life-threatening infections, especially in heavily colonized patients. Despite the clinical relevance of MRE colonization levels, we know little about how they vary in hospitalized patients and the clinical factors that determine those levels. Here, we conducted one of the largest studies of MRE fecal levels by tracking longitudinally 133 acute leukemia patients and monitoring their MRE levels over time through extensive culturing. MRE were defined as Enterobacteriaceae species that acquired nonsusceptibility to ≥1 agent in ≥3 antimicrobial categories. In addition, due to the selective media used, the MRE had to be resistant to third-generation cephalosporins. MRE were detected in 60% of the patients, but their fecal levels varied considerably among patients and within the same patient (>6 and 4 orders of magnitude, respectively). Multivariate analysis of clinical metadata revealed an impact of intravenous beta-lactams (i.e., meropenem and piperacillin-tazobactam), which significantly diminished the fecal MRE levels in hospitalized patients. Consistent with a direct action of beta-lactams, we found an effect only when the patient was colonized with strains sensitive to the administered beta-lactam (P < 0.001) but not with nonsusceptible strains. We report previously unobserved inter- and intraindividual heterogeneity in MRE fecal levels, suggesting that quantitative surveillance is more informative than qualitative surveillance of hospitalized patients. In addition, our study highlights the relevance of incorporating antibiotic treatment and susceptibility data of gut-colonizing pathogens for future clinical studies and in clinical decision-making.
Assuntos
Antibacterianos/efeitos adversos , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Fezes/microbiologia , beta-Lactamas/efeitos adversos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Meios de Cultura , Hospitalização , Humanos , Injeções Intravenosas , Leucemia/complicações , Testes de Sensibilidade Microbiana , Estudos Prospectivos , beta-Lactamas/administração & dosagem , beta-Lactamas/farmacologiaRESUMO
OBJECTIVES: The antiviral zidovudine has been recently identified as an active drug against resistant Enterobacteriaceae, but prevalence of resistance to this compound remains unknown. The aim was to estimate the prevalence of clinical Escherichia coli isolates resistant to zidovudine and to decipher the mechanism of zidovudine resistance. METHODS: We screened 537 isolates on zidovudine-containing agar plates and studied their thymidine kinase (tdk) gene sequences, the putative target involved in zidovudine resistance. Moreover, sequence analysis of 633 complete genomes of E. coli was performed to investigate mutation in the tdk gene. A comparative genomic analysis was done on an in vitro zidovudine-resistant mutant. RESULTS: After screening on our medium containing 2.7 mg/L (10 µM) zidovudine, nine strains had a zidovudine MIC >26.7 mg/L. The gene was absent in three isolates, inactivated by an IS (IS1X2 and ISApl1) in two isolates and mutated in four isolates. A genomic analysis of 633 E. coli genomes showed heterogeneity of the tdk gene sequence, with 27 different sequences. Among them, three genomes showed an inactivation of the gene (IS, stop codon and no tdk gene sequence). The in vitro mutant E. coli had 27 SNPs in eight genes of the core genome compared with the initial strain. CONCLUSIONS: Our study reports zidovudine-resistant clinical isolates of E. coli, presumably related to tdk inactivation. Diversity of Tdk in bacterial genomes can be large. Other mechanisms need to be considered in zidovudine resistance. The use of zidovudine in antibiotic-resistant infections needs to be in combination and should be tested before clinical administration.