Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 23(15): e202200121, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35593146

RESUMO

Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.


Assuntos
Elétrons , NADH NADPH Oxirredutases , Compostos Azo/química , Corantes/química , NADH NADPH Oxirredutases/metabolismo , Nitrorredutases
2.
Biotechnol Bioeng ; 119(3): 677-684, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953086

RESUMO

Cyclic dinucleotides (CDNs) are widely used secondary signaling molecules in prokaryotic and eukaryotic cells. As strong agonists of the stimulator of interferon genes, they are of great interest for pharmaceutical applications. In particular, cyclic-GMP-AMP and related synthetic CDNs are promising candidates in preclinical work and even some in clinical phase 1 and 2 studies. The comparison of chemical and biocatalytic synthesis routes elucidated that biological CDN synthesis offers some advantages, such as shorter synthesis time, avoiding complex protective group chemistry, and the access to a new spectrum of CDNs. However, the synthesis of CDNs in preparative quantities is still a challenge, since the chemical synthesis of CDNs suffers from low yields and complex synthetic routes and the enzymatically catalyzed synthesis is limited by low product titers and process stability. We aim to review the latest discoveries and recent trends in chemical and biocatalytic synthesis of CDNs with a focus on the synthesis of a huge variety of CDN derivatives. We furthermore consider the most promising biotechnological processes for CDN production by evaluating key figures of the currently known processes.


Assuntos
GMP Cíclico , Ligação Proteica
3.
Chembiochem ; 21(22): 3225-3228, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32633874

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that catalyzes the synthesis of the cyclic GMP-AMP dinucleotide 2'3'-cGAMP. 2'3'-cGAMP functions as inducer for the production of type I interferons. Derivatives of this important second messenger are highly valuable for pharmaceutical applications. However, the production of these analogues requires complex, multistep syntheses. Herein, human cGAS is shown to react with a series of unnatural nucleotides, thus leading to novel cyclic dinucleotides. Most substrate derivatives with modifications at the nucleobase, ribose, and the α-thio phosphate were accepted. These results demonstrate the catalytic promiscuity of human cGAS and its utility for the biocatalytic synthesis of cyclic dinucleotide derivatives.


Assuntos
Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/metabolismo , Biocatálise , Humanos , Conformação de Ácido Nucleico , Nucleotídeos Cíclicos/química , Nucleotidiltransferases/química
4.
Molecules ; 25(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325737

RESUMO

Monoterpenes, such as the cyclic terpene limonene, are valuable and important natural products widely used in food, cosmetics, household chemicals, and pharmaceutical applications. The biotechnological production of limonene with microorganisms may complement traditional plant extraction methods. For this purpose, the bioprocess needs to be stable and ought to show high titers and space-time yields. In this study, a limonene production process was developed with metabolically engineered Escherichia coli at the bioreactor scale. Therefore, fed-batch fermentations in minimal medium and in the presence of a non-toxic organic phase were carried out with E. coli BL21 (DE3) pJBEI-6410 harboring the optimized genes for the mevalonate pathway and the limonene synthase from Mentha spicata on a single plasmid. The feasibility of glycerol as the sole carbon source for cell growth and limonene synthesis was examined, and it was applied in an optimized fermentation setup. Titers on a gram-scale of up to 7.3 g·Lorg-1 (corresponding to 3.6 g·L-1 in the aqueous production phase) were achieved with industrially viable space-time yields of 0.15 g·L-1·h-1. These are the highest monoterpene concentrations obtained with a microorganism to date, and these findings provide the basis for the development of an economic and industrially relevant bioprocess.


Assuntos
Escherichia coli/metabolismo , Limoneno/metabolismo , Engenharia Metabólica , Escherichia coli/genética , Fermentação , Glicerol/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Monoterpenos/metabolismo
5.
Int J Mol Sci ; 21(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877895

RESUMO

The cyclic GMP-AMP synthase (cGAS) catalyzes the synthesis of the multifunctional second messenger, cGAMP, in metazoans. Although numerous cGAS homologues are predicted in protein databases, the catalytic activity towards cGAMP synthesis has been proven for only four of them. Therefore, we selected five novel and yet uncharacterized cGAS homologues, which cover a broad range in the field of vertebrates. Cell-free protein synthesis (CFPS) was used for a pre-screening to investigate if the cGAS genes originating from higher organisms can be efficiently expressed in a bacterial expression system. As all tested cGAS variants were expressible, enzymes were synthesized in vivo to supply higher amounts for a subsequent in vitro activity assay. The assays were carried out with purified enzymes and revealed vast differences in the activity of the homologues. For the first time, the cGAS homologues from the Przewalski's horse, naked mole-rat, bald eagle, and zebrafish were proven to catalyze the synthesis of cGAMP. The extension of the list of described cGAS variants enables the acquisition of further knowledge about the structural and molecular mechanism of cGAS, potentially leading to functional improvement of the enzyme.


Assuntos
Regulação Enzimológica da Expressão Gênica , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Biossíntese de Proteínas , Animais , Biocatálise , Sistema Livre de Células , Águias/genética , Águias/metabolismo , Cavalos/genética , Cavalos/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Nucleotidiltransferases/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Biotechnol Prog ; 39(6): e3373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408088

RESUMO

Cell-free protein synthesis (CFPS) systems are an attractive method to complement the usual cell-based synthesis of proteins, especially for screening approaches. The literature describes a wide variety of CFPS systems, but their performance is difficult to compare since the reaction components are often used at different concentrations. Therefore, we have developed a calculation tool based on amino acid balancing to evaluate the performance of CFPS by determining the fractional yield as the ratio between theoretically achievable and experimentally achieved protein molar concentration. This tool was applied to a series of experiments from our lab and to various systems described in the literature to identify systems that synthesize proteins very efficiently and those that still have potential for higher yields. The well-established Escherichia coli system showed a high efficiency in the utilization of amino acids, but interestingly, less considered systems, such as those based on Vibrio natriegens or Leishmania tarentolae, also showed exceptional fractional yields of over 70% and 90%, respectively, implying very efficient conversions of amino acids. The methods and tools described here can quickly identify when a system has reached its maximum or has limitations. We believe that this approach will facilitate the evaluation and optimization of existing CFPS systems and provides the basis for the systematic development of new CFPS systems.


Assuntos
Aminoácidos , Biossíntese de Proteínas , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/metabolismo , Sistema Livre de Células/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa