Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 280: 1-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26995324

RESUMO

Growing evidence implicates the dentate gyrus in temporal lobe epilepsy (TLE). Dentate granule cells limit the amount of excitatory signaling through the hippocampus and exhibit striking neuroplastic changes that may impair this function during epileptogenesis. Furthermore, aberrant integration of newly-generated granule cells underlies the majority of dentate restructuring. Recently, attention has focused on the mammalian target of rapamycin (mTOR) signaling pathway as a potential mediator of epileptogenic change. Systemic administration of the mTOR inhibitor rapamycin has promising therapeutic potential, as it has been shown to reduce seizure frequency and seizure severity in rodent models. Here, we tested whether mTOR signaling facilitates abnormal development of granule cells during epileptogenesis. We also examined dentate inflammation and mossy cell death in the dentate hilus. To determine if mTOR activation is necessary for abnormal granule cell development, transgenic mice that harbored fluorescently-labeled adult-born granule cells were treated with rapamycin following pilocarpine-induced status epilepticus. Systemic rapamycin effectively blocked phosphorylation of S6 protein (a readout of mTOR activity) and reduced granule cell mossy fiber axon sprouting. However, the accumulation of ectopic granule cells and granule cells with aberrant basal dendrites was not significantly reduced. Mossy cell death and reactive astrocytosis were also unaffected. These data suggest that anti-epileptogenic effects of mTOR inhibition may be mediated by mechanisms other than inhibition of these common dentate pathologies. Consistent with this conclusion, rapamycin prevented pathological weight gain in epileptic mice, suggesting that rapamycin might act on central circuits or even peripheral tissues controlling weight gain in epilepsy.


Assuntos
Hipocampo/patologia , Imunossupressores/uso terapêutico , Sirolimo/uso terapêutico , Estado Epiléptico/complicações , Estado Epiléptico/terapia , Aumento de Peso/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/patologia , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/patologia , Pilocarpina/toxicidade , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Aumento de Peso/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
2.
Neuron ; 75(6): 1022-34, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22998871

RESUMO

The dentate gyrus is hypothesized to function as a "gate," limiting the flow of excitation through the hippocampus. During epileptogenesis, adult-generated granule cells (DGCs) form aberrant neuronal connections with neighboring DGCs, disrupting the dentate gate. Hyperactivation of the mTOR signaling pathway is implicated in driving this aberrant circuit formation. While the presence of abnormal DGCs in epilepsy has been known for decades, direct evidence linking abnormal DGCs to seizures has been lacking. Here, we isolate the effects of abnormal DGCs using a transgenic mouse model to selectively delete PTEN from postnatally generated DGCs. PTEN deletion led to hyperactivation of the mTOR pathway, producing abnormal DGCs morphologically similar to those in epilepsy. Strikingly, animals in which PTEN was deleted from ≥ 9% of the DGC population developed spontaneous seizures in about 4 weeks, confirming that abnormal DGCs, which are present in both animals and humans with epilepsy, are capable of causing the disease.


Assuntos
Giro Denteado/patologia , Epilepsia/genética , Epilepsia/patologia , Regulação da Expressão Gênica/fisiologia , Neurônios/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Eletroencefalografia , Epilepsia/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gliose/genética , Proteínas de Fluorescência Verde/genética , Guanilato Quinases/metabolismo , Imunossupressores/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musgosas Hipocampais/patologia , Neurônios/metabolismo , Condutos Olfatórios/patologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosfopiruvato Hidratase/metabolismo , Sirolimo/farmacologia , Fatores de Tempo , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa