Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Semin Liver Dis ; 44(1): 1-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378025

RESUMO

Drug-induced liver injury (DILI) is an adverse reaction to medications and other xenobiotics that leads to liver dysfunction. Based on differential clinical patterns of injury, DILI is classified into hepatocellular, cholestatic, and mixed types; although hepatocellular DILI is associated with inflammation, necrosis, and apoptosis, cholestatic DILI is associated with bile plugs and bile duct paucity. Ursodeoxycholic acid (UDCA) has been empirically used as a supportive drug mainly in cholestatic DILI, but both curative and prophylactic beneficial effects have been observed for hepatocellular DILI as well, according to preliminary clinical studies. This could reflect the fact that UDCA has a plethora of beneficial effects potentially useful to treat the wide range of injuries with different etiologies and pathomechanisms occurring in both types of DILI, including anticholestatic, antioxidant, anti-inflammatory, antiapoptotic, antinecrotic, mitoprotective, endoplasmic reticulum stress alleviating, and immunomodulatory properties. In this review, a revision of the literature has been performed to evaluate the efficacy of UDCA across the whole DILI spectrum, and these findings were associated with the multiple mechanisms of UDCA hepatoprotection. This should help better rationalize and systematize the use of this versatile and safe hepatoprotector in each type of DILI scenarios.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Hepatopatias , Humanos , Ácido Ursodesoxicólico/uso terapêutico , Ácido Ursodesoxicólico/farmacologia , Colestase/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Necrose/tratamento farmacológico , Fígado
2.
Semin Liver Dis ; 41(3): 331-348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34130334

RESUMO

The most concerned issue in the context of drug/herb-induced chronic cholestasis is vanishing bile duct syndrome. The progressive destruction of intrahepatic bile ducts leading to ductopenia is usually not dose dependent, and has a delayed onset that should be suspected when abnormal serum cholestasis enzyme levels persist despite drug withdrawal. Immune-mediated cholangiocyte injury, direct cholangiocyte damage by drugs or their metabolites once in bile, and sustained exposure to toxic bile salts when biliary epithelium protective defenses are impaired are the main mechanisms of cholangiolar damage. Current therapeutic alternatives are scarce and have not shown consistent beneficial effects so far. This review will summarize the current literature on the main diagnostic tools of ductopenia and its histological features, and the differential diagnostic with other ductopenic diseases. In addition, pathomechanisms will be addressed, as well as the connection between them and the supportive and curative strategies for ductopenia management.


Assuntos
Sistema Biliar , Colestase , Preparações Farmacêuticas , Ductos Biliares , Ductos Biliares Intra-Hepáticos , Colestase/induzido quimicamente , Colestase/diagnóstico , Colestase/terapia , Humanos
3.
Cell Mol Life Sci ; 76(1): 99-128, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30343320

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the "first hit" for NAFLD development. NAFLD progression seems to involve the occurrence of "parallel, multiple-hit" injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.


Assuntos
Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Progressão da Doença , Ácidos Graxos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Fígado/fisiopatologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Estresse Oxidativo , Transdução de Sinais
4.
Clin Sci (Lond) ; 133(1): 117-134, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30538149

RESUMO

We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.


Assuntos
Antioxidantes/farmacologia , Colestase/prevenção & controle , Heme Oxigenase (Desciclizante)/biossíntese , Hemina/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo , Animais , Bile/metabolismo , Bilirrubina/metabolismo , Catalase/metabolismo , Colestase/induzido quimicamente , Colestase/enzimologia , Colestase/patologia , Modelos Animais de Doenças , Indução Enzimática , Glutationa/metabolismo , Fígado/enzimologia , Fígado/patologia , Masculino , Ratos Wistar , Superóxido Dismutase/metabolismo , terc-Butil Hidroperóxido
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1072-1085, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29355600

RESUMO

Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 ß-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K+ depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions.


Assuntos
Colestase/metabolismo , Endocitose , Hepatócitos/metabolismo , Fígado/metabolismo , Microdomínios da Membrana/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Colestase/induzido quimicamente , Colestase/patologia , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Fígado/patologia , Microdomínios da Membrana/patologia , Ratos , Ratos Wistar
6.
Arch Toxicol ; 92(2): 729-744, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29090346

RESUMO

Estradiol-17ß-D-glucuronide (E17G), through the activation of different signaling proteins, induces acute endocytic internalization of canalicular transporters in rat, including multidrug resistance-associated protein 2 (Abcc2) and bile salt export pump (Abcb11), generating cholestasis. Insulin-like growth factor 1 receptor (IGF-1R) is a membrane-bound tyrosine kinase receptor that can potentially interact with proteins activated by E17G. The aim of this study was to analyze the potential role of IGF-1R in the effects of E17G in isolated perfused rat liver (IPRL) and isolated rat hepatocyte couplets. In vitro, IGF-1R inhibition by tyrphostin AG1024 (TYR, 100 nM), or its knock-down with siRNA, strongly prevented E17G-induced impairment of Abcc2 and Abcb11 function and localization. The protection by TYR was not additive to that produced by wortmannin (PI3K inhibitor, 100 nM), and both protections share the same dependency on microtubule integrity, suggesting that IGF-1R shared the signaling pathway of PI3K/Akt. Further analysis of the activation of Akt and IGF-1R induced by E17G indicated a sequence of activation GPR30-IGF-1R-PI3K/Akt. In IPRL, an intraportal injection of E17G triggered endocytosis of Abcc2 and Abcb11, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of Abcc2 and Abcb11 substrates. TYR did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of transporters into the canalicular membrane. In conclusion, the activation of IGF-1R is a key factor in the alteration of canalicular transporter function and localization induced by E17G, and its activation follows that of GPR30 and precedes that of PI3K/Akt.


Assuntos
Colestase/metabolismo , Estradiol/análogos & derivados , Hepatócitos/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células Cultivadas , Colestase/induzido quimicamente , Endocitose , Estradiol/toxicidade , Feminino , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Ratos Wistar , Transdução de Sinais , Tirfostinas/farmacologia , Wortmanina/farmacologia
7.
Arch Toxicol ; 91(6): 2391-2403, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27913845

RESUMO

In previous studies, we showed that the pro-oxidant model agent tert-butyl hydroperoxide (tBuOOH) induces alterations in hepatocanalicular secretory function by activating Ca2+-dependent protein kinase C isoforms (cPKC), via F-actin disorganization followed by endocytic internalization of canalicular transporters relevant to bile formation (Mrp2, Bsep). Since mitogen-activated protein kinases (MAPKs) may be downstream effectors of cPKC, we investigated here the involvement of the MAPKs of the ERK1/2, JNK1/2, and p38MAPK types in these deleterious effects. tBuOOH (100 µM, 15 min) increased the proportion of the active, phosphorylated forms of ERK1/2, JNK1/2, and p38MAPK, and panspecific PKC inhibition with bisindolylmaleimide-1 (100 nM) or selective cPKC inhibition with Gö6976 (1 µM) prevented the latter two events. In isolated rat hepatocyte couplets, tBuOOH (100 µM, 15 min) decreased the canalicular vacuolar accumulation of the fluorescent Bsep and Mrp2 substrates, cholylglycylamido fluorescein, and glutathione-methylfluorescein, respectively, and selective inhibitors of ERK1/2 (PD098059), JNK1/2 (SP600125), and p38MAPK (SB203580) partially prevented these alterations. In in situ perfused rat livers, these three MAPK inhibitors prevented tBuOOH (75 µM)-induced impairment of bile flow and the decrease in the biliary output of the Bsep and Mrp2 substrates, taurocholate, and dinitrophenyl-S-glutathione, respectively. The changes in Bsep/Mrp2 and F-actin localization induced by tBuOOH, as assessed by (immuno)fluorescence staining followed by analysis of confocal images, were prevented total or partially by the MAPK inhibitors. We concluded that MAPKs of the ERK1/2, JNK1/2, and p38MAPK types are all involved in cholestasis induced by oxidative stress, by promoting F-actin rearrangement and further endocytic internalization of canalicular transporters critical for bile formation.


Assuntos
Canalículos Biliares/efeitos dos fármacos , Colestase/induzido quimicamente , Fígado/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , terc-Butil Hidroperóxido/toxicidade , Animais , Canalículos Biliares/metabolismo , Canalículos Biliares/fisiopatologia , Colestase/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Proteína Quinase C/metabolismo , Ratos Wistar
9.
Liver Int ; 36(2): 302-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26104271

RESUMO

BACKGROUND & AIMS: Cyproterone acetate (CPA), an anti-androgenic drug for prostate cancer, has been associated with drug-induced liver injury (DILI). We aim to expand the knowledge on the spectrum of phenotypes and outcomes of CPA-induced DILI. METHODS: Twenty-two males (70 ± 8 years; range 54-83) developing liver damage as a result of CPA therapy (dose: 150 ± 50 mg/day; range 50-200) were included. Severity index and causality by RUCAM were assessed. RESULTS: From 1993 to 2013, 22 patients were retrieved. Latency was 163 ± 97 days. Most patients were symptomatic, showing hepatocellular injury (91%) and jaundice. Liver tests at onset were: ALT 18 ± 13 × ULN, ALP 0.7 ± 0.7 × ULN and total serum bilirubin 14 ± 10 mg/dl. International normalized ratio values higher than 1.5 were observed in 14 (66%) patients. Severity was mild in 1 case (4%), moderate in 7 (32%), severe in 11 (50%) and fatal in 3 (14%). Five patients developed ascitis, and four encephalopathy. One patient had a liver injury that resembled autoimmune hepatitis. Eleven (50%) were hospitalized. Nineteen patients recovered after CPA withdrawal, although three required steroid therapy (two of them had high ANA titres). Liver biopsy was performed in seven patients (two hepatocellular collapse, one submassive necrosis, two cholestatic hepatitis, one cirrhosis with iron overload and one autoimmune hepatitis). RUCAM category was 'highly probable' in 19 (86%), 'probable' in 1 (4%), and 'possible' in 2 (9%). CONCLUSIONS: CPA-induced liver injury is severe and can be fatal, and may occasionally resemble autoimmune DILI. The benefit/risk ratio of this drug should be thoroughly assessed in each patient.


Assuntos
Corticosteroides/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas , Acetato de Ciproterona , Fígado/patologia , Neoplasias da Próstata/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/administração & dosagem , Antagonistas de Androgênios/efeitos adversos , Anti-Inflamatórios/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Acetato de Ciproterona/administração & dosagem , Acetato de Ciproterona/efeitos adversos , Humanos , Icterícia/etiologia , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Medição de Risco , Índice de Gravidade de Doença
10.
Arch Toxicol ; 90(4): 891-903, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25813982

RESUMO

Estradiol-17ß-D-glucuronide (E17G) induces acute endocytic internalization of canalicular transporters, including multidrug resistance-associated protein 2 (Abcc2) in rat, generating cholestasis. Several proteins organized in at least two different signaling pathways are involved in E17G cholestasis: one pathway involves estrogen receptor alpha (ERα), Ca(2+)-dependent protein kinase C and p38-mitogen activated protein kinase, and the other pathway involves GPR30, PKA, phosphoinositide 3-kinase/AKT and extracellular signal-related kinase 1/2. EGF receptor (EGFR) can potentially participate in both pathways since it interacts with GPR30 and ERα. Hence, the aim of this study was to analyze the potential role of this receptor and its downstream effectors, members of the Src family kinases in E17G-induced cholestasis. In vitro, EGFR inhibition by Tyrphostin (Tyr), Cl-387785 or its knockdown with siRNA strongly prevented E17G-induced impairment of Abcc2 function and localization. Activation of EGFR was necessary but not sufficient to impair the canalicular transporter function, whereas the simultaneous activation of EGFR and GPR30 could impair Abcc2 transport. The protection of Tyr was not additive to that produced by the ERα inhibitor ICI neither with that produced by Src kinase inhibitors, suggesting that EGFR shared the signaling pathway of ERα and Src. Further analysis of ERα, EGFR and Src activations induced by E17G, demonstrated that ERα activation precedes that of EGFR and EGFR activation precedes that of Src. In conclusion, activation of EGFR is a key factor in the alteration of canalicular transporter function and localization induced by E17G and it occurs before that of Src and after that of ERα.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Receptores ErbB/metabolismo , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/metabolismo , Hepatócitos/metabolismo , Animais , Canalículos Biliares/efeitos dos fármacos , Canalículos Biliares/metabolismo , Canalículos Biliares/fisiopatologia , Células Cultivadas , Colestase/induzido quimicamente , Colestase/metabolismo , Receptores ErbB/genética , Estradiol/metabolismo , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Fulvestranto , Técnicas de Silenciamento de Genes , Hepatócitos/efeitos dos fármacos , Quinazolinas/farmacologia , Ratos , Ratos Wistar , Tirfostinas/farmacologia , Quinases da Família src/metabolismo
11.
Hepatology ; 59(3): 1016-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24115158

RESUMO

UNLABELLED: Estradiol-17ß-D-glucuronide (E17G) activates different signaling pathways (e.g., Ca(2+) -dependent protein kinase C, phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinases [MAPKs] p38 and extracellular signal-related kinase 1/2, and estrogen receptor alpha) that lead to acute cholestasis in rat liver with retrieval of the canalicular transporters, bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). E17G shares with nonconjugated estradiol the capacity to activate these pathways. G-protein-coupled receptor 30 (GPR30) is a receptor implicated in nongenomic effects of estradiol, and the aim of this study was to analyze the potential role of this receptor and its downstream effectors in E17G-induced cholestasis. In vitro, GPR30 inhibition by G15 or its knockdown with small interfering RNA strongly prevented E17G-induced impairment of canalicular transporter function and localization. E17G increased cyclic adenosine monophosphate (cAMP) levels, and this increase was blocked by G15, linking GPR30 to adenylyl cyclase (AC). Moreover, AC inhibition totally prevented E17G insult. E17G also increased protein kinase A (PKA) activity, which was blocked by G15 and AC inhibitors, connecting the links of the pathway, GPR30-AC-PKA. PKA inhibition prevented E17G-induced cholestasis, whereas exchange protein activated directly by cyclic nucleotide/MAPK kinase, another cAMP downstream effector, was not implicated in cAMP cholestatic action. In the perfused rat liver model, inhibition of the GPR30-AC-PKA pathway totally prevented E17G-induced alteration in Abcb11 and Abcc2 function and localization. CONCLUSION: Activation of GPR30-AC-PKA is a key factor in the alteration of canalicular transporter function and localization induced by E17G. Interaction of E17G with GPR30 may be the first event in the cascade of signaling activation.


Assuntos
Adenilil Ciclases/metabolismo , Colestase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estradiol/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Canalículos Biliares/metabolismo , Células Cultivadas , Colestase/induzido quimicamente , Estradiol/toxicidade , Técnicas de Silenciamento de Genes , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Ratos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
Arch Toxicol ; 89(6): 979-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24912783

RESUMO

At present, it has not been systematically evaluated whether the functional alterations induced by cholestatic compounds in canalicular transporters involved in bile formation can be reproduced in sandwich-cultured rat hepatocytes (SCRHs). Here, we focused on two clinically relevant cholestatic agents, such as estradiol 17ß-D-glucuronide (E17G) and taurolithocholate (TLC), also testing the ability of dibutyryl cyclic AMP (DBcAMP) to prevent their effects. SCRHs were incubated with E17G (200 µM) or TLC (2.5 µM) for 30 min, with or without pre-incubation with DBcAMP (10 µM) for 15 min. Then, the increase in glutathione methyl fluorescein (GS-MF)-associated fluorescence inside the canaliculi was monitored by quantitative time-lapse imaging, and Mrp2 transport activity was calculated by measuring the slope of the time-course fluorescence curves during the initial linear phase, which was considered to be the Mrp2-mediated initial transport rate (ITR). E17G and TLC impaired canalicular bile formation, as evidenced by a decrease in both the bile canaliculus volume and the bile canaliculus width, estimated from 3D and 2D confocal images, respectively. These compounds decreased ITR and induced retrieval of Mrp2, a main pathomechanism involved in their cholestatic effects. Finally, DBcAMP prevented these effects, and its well-known choleretic effect was evident from the increase in the canalicular volume/width values; this choleretic effect is associated in part with its capability to increase Mrp2 activity, evidenced here by the increase in ITR of GS-MF. Our study supports the use of SCRHs as an in vitro model useful to quantify canalicular transport function under conditions of cholestasis and choleresis.


Assuntos
Canalículos Biliares/metabolismo , Bile/metabolismo , Transporte Biológico , Colestase/metabolismo , Hepatócitos/metabolismo , Modelos Biológicos , Animais , Canalículos Biliares/efeitos dos fármacos , Bucladesina/farmacologia , Técnicas de Cultura de Células , Células Cultivadas , Colestase/induzido quimicamente , Estradiol/análogos & derivados , Estradiol/farmacologia , Hepatócitos/efeitos dos fármacos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ácido Taurolitocólico/farmacologia
13.
Arch Toxicol ; 88(2): 501-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24306262

RESUMO

Bilirubin is an endogenous antioxidant with cytoprotective properties, and several studies highlight its potential in the treatment of pro-oxidant diseases. We demonstrated that oxidative stress (OS), a key feature in most hepatopathies, induces cholestasis by actin cytoskeleton disarrangement and further endocytic internalization of key canalicular transporters, such as the bile salt export pump (Bsep) and the multidrug resistance-associated protein 2 (Mrp2) . Here, we evaluated the capability of physiological concentrations of unconjugated bilirubin (UB) to limit OS and the impairment in biliary secretory function induced by the model pro-oxidant agent, tert-butylhydroperoxide (tBuOOH). UB fully prevented the formation of reactive oxygen species and membrane lipid peroxidation induced by tBuOOH in isolated rat hepatocytes. In the isolated rat hepatocyte couplet model, UB (17.1 µM) prevented the endocytic internalization of Bsep and Mrp2 and the impairment in their secretory function induced by tBuOOH. UB also prevented actin disarrangement, as evaluated by both plasma membrane bleb formation and actin fluorescent staining. Finally, UB prevented tBuOOH-induced cPKC activation. Experiments in isolated perfused rat livers showed that UB prevents the increase in oxidized glutathione biliary excretion and the drop in bile flow and the biliary excretion of specific Bsep and Mrp2 substrates. We conclude that physiological concentrations of UB are sufficient to prevent the biliary secretory failure induced by OS, by counteracting actin disarrangement and the consequent internalization of canalicular transporters relevant to normal bile formation. This reveals an important role for UB in preserving biliary secretory function under OS conditions.


Assuntos
Bilirrubina/farmacologia , Colestase/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Actinas/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Bilirrubina/metabolismo , Colestase/metabolismo , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Proteína Quinase C-alfa/metabolismo , Ratos , Ratos Wistar , terc-Butil Hidroperóxido/farmacologia
14.
Arch Toxicol ; 88(9): 1695-709, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24614978

RESUMO

Oxidative stress (OS) is a common event in most hepatopathies, leading to mitochondrial permeability transition pore (MPTP) formation and further exacerbation of both OS from mitochondrial origin and cell death. Intracellular Ca²âº increase plays a permissive role in these events, but the underlying mechanisms are poorly known. We examined in primary cultured rat hepatocytes whether the Ca²âº/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling pathway is involved in this process, by using tert-butyl hydroperoxide (tBOOH) as a pro-oxidant, model compound. tBOOH (500 µM, 15 min) induced MPTP formation, as assessed by measuring mitochondrial membrane depolarization as a surrogate marker, and increased lipid peroxidation in a cyclosporin A (CsA)-sensitive manner, revealing the involvement of MPTPs in tBOOH-induced radical oxygen species (ROS) formation. Intracellular Ca²âº sequestration with BAPTA/AM, CaM blockage with W7 or trifluoperazine, and CaMKII inhibition with KN-62 all fully prevented tBOOH-induced MPTP opening and reduced tBOOH-induced lipid peroxidation to a similar extent to CsA, suggesting that Ca²âº/CaM/CaMKII signaling pathway fully mediates MPTP-mediated mitochondrial ROS generation. tBOOH-induced apoptosis, as shown by flow cytometry of annexin V/propidium iodide, mitochondrial release of cytochrome c, activation of caspase-3 and increase in the Bax-to-Bcl-xL ratio, and the Ca²âº/CaM/CaMKII signaling antagonists fully prevented these effects. Intramitochondrial CaM and CaMKII were partially involved in tBOOH-induced MPTP formation, since W7 and KN-62 both attenuated the tBOOH-induced, MPTP-mediated swelling of isolated mitochondria. We concluded that Ca²âº/CaM/CaMKII signaling pathway is a key mediator of OS-induced MPTP formation and the subsequent exacerbation of OS from mitochondrial origin and apoptotic cell death.


Assuntos
Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Calmodulina/antagonistas & inibidores , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/agonistas , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Oxidantes/antagonistas & inibidores , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/antagonistas & inibidores , terc-Butil Hidroperóxido/toxicidade
15.
Life Sci ; 352: 122839, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876186

RESUMO

AIMS: Estradiol 17ß-d-glucuronide (E217G) induces cholestasis by triggering endocytosis and further intracellular retention of the canalicular transporters Bsep and Mrp2, in a cPKC- and PI3K-dependent manner, respectively. Pregnancy-induced cholestasis has been associated with E217G cholestatic effect, and is routinely treated with ursodeoxycholic acid (UDCA). Since protective mechanisms of UDCA in E217G-induced cholestasis are still unknown, we ascertained here whether its main metabolite, tauroursodeoxycholate (TUDC), can prevent endocytosis of canalicular transporters by counteracting cPKC and PI3K/Akt activation. MAIN METHODS: Activation of cPKC and PI3K/Akt was evaluated in isolated rat hepatocytes by immunoblotting (assessment of membrane-bound and phosphorylated forms, respectively). Bsep/Mrp2 function was quantified in isolated rat hepatocyte couplets (IRHCs) by assessing the apical accumulation of their fluorescent substrates, CLF and GS-MF, respectively. We also studied, in isolated, perfused rat livers (IPRLs), the status of Bsep and Mrp2 transport function, assessed by the biliary excretion of TC and DNP-SG, respectively, and Bsep/Mrp2 localization by immunofluorescence. KEY FINDINGS: E217G activated both cPKC- and PI3K/Akt-dependent signaling, and pretreatment with TUDC significantly attenuated these activations. In IRHCs, TUDC prevented the E217G-induced decrease in apical accumulation of CLF and GS-MF, and inhibitors of protein phosphatases failed to counteract this protection. In IPRLs, E217G induced an acute decrease in bile flow and in the biliary excretion of TC and DNP-SG, and this was prevented by TUDC. Immunofluorescence studies revealed that TUDC prevented E217G-induced Bsep/Mrp2 endocytosis. SIGNIFICANCE: TUDC restores function and localization of Bsep/Mrp2 impaired by E217G, by preventing both cPKC and PI3K/Akt activation in a protein-phosphatase-independent manner.


Assuntos
Colestase , Endocitose , Estradiol , Hepatócitos , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Ácido Tauroquenodesoxicólico , Animais , Colestase/metabolismo , Colestase/induzido quimicamente , Colestase/prevenção & controle , Ratos , Transdução de Sinais/efeitos dos fármacos , Estradiol/metabolismo , Estradiol/farmacologia , Estradiol/análogos & derivados , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Feminino , Masculino , Proteína Quinase C/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
16.
Biochimie ; 223: 41-53, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608750

RESUMO

The endogenous metabolite of estradiol, estradiol 17ß-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.


Assuntos
Estradiol , Hepatócitos , NADPH Oxidases , Espécies Reativas de Oxigênio , Animais , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/metabolismo , Estradiol/análogos & derivados , Feminino , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/patologia , Ratos Wistar , Acetofenonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Colestase Intra-Hepática , Complicações na Gravidez , Transportadores de Cassetes de Ligação de ATP
17.
Dig Dis Sci ; 58(6): 1602-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23371010

RESUMO

BACKGROUND: Estradiol-17ß-D-glucuronide (E17G) induces cholestasis in vivo, endocytic internalization of the canalicular transporters multidrug resistance-associated protein 2 (Abcc2) and bile salt export pump (Abcb11) being a key pathomechanism. Cyclic AMP (cAMP) prevents cholestasis by targeting these transporters back to the canalicular membrane. In hepatocyte couplets, glucagon and salbutamol, both of which increase cAMP, prevented E17G action by stimulating the trafficking of these transporters by different mechanisms, namely: glucagon activates a protein kinase A-dependent pathway, whereas salbutamol activates an exchange-protein activated by cAMP (Epac)-mediated, microtubule-dependent pathway. METHODS: The present study evaluated whether glucagon and salbutamol prevent E17G-induced cholestasis in a more physiological model, i.e., the perfused rat liver (PRL). Additionally, the preventive effect of in vivo alanine administration, which induces pancreatic glucagon secretion, was evaluated. RESULTS: In PRLs, glucagon and salbutamol prevented E17G-induced decrease in both bile flow and the secretory activity of Abcc2 and Abcb11. Salbutamol prevention fully depended on microtubule integrity. On the other hand, glucagon prevention was microtubule-independent only at early time periods after E17G administration, but it was ultimately affected by the microtubule disrupter colchicine. Cholestasis was associated with endocytic internalization of Abcb11 and Abcc2, the intracellular carriers being partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained colocalized with Rab11a after glucagon treatment. In vivo, alanine administration increased hepatic cAMP and accelerated the recovery of bile flow and Abcb11/Abcc2 transport function after E17G administration. The initial recovery afforded by alanine was microtubule-independent, but microtubule integrity was required to sustain this protective effect. CONCLUSION: We conclude that modulation of cAMP levels either by direct administration of cAMP modulators or by physiological manipulations leadings to hormone-mediated increase of cAMP levels (alanine administration), prevents estrogen-induced cholestasis in models with preserved liver architecture, through mechanisms similar to those arisen from in vitro studies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Albuterol/uso terapêutico , Colestase/prevenção & controle , AMP Cíclico/agonistas , Estradiol , Glucagon/uso terapêutico , Hormônios/uso terapêutico , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alanina/uso terapêutico , Animais , Biomarcadores/metabolismo , Colestase/etiologia , Colestase/metabolismo , AMP Cíclico/metabolismo , Feminino , Fígado/metabolismo , Fígado/fisiopatologia , Ratos , Ratos Wistar , Resultado do Tratamento , Proteínas rab de Ligação ao GTP/metabolismo
18.
Life Sci ; 295: 120423, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35196530

RESUMO

Hepatocyte growth factor (HGF) has been proved to protect the liver against α-naphthylisothiocyanate (ANIT)-induced cholestasis by acting as an antioxidant agent and redirecting toxic biliary solutes towards blood for urinary excretion. However, this may represent an additional potential risk for kidney integrity, which is already compromised by the cholestatic process itself (cholemic nephropathy). Therefore, in the present work, we studied the renal damage caused by ANIT-induced cholestasis and whether it is aggravated or, on the contrary, counteracted by HGF; if the latter holds, the involvement of its antioxidant properties will be ascertained. ANIT-induced cholestatic deleterious renal effects were corroborated by the presence of urine bile salts, impairment of renal function, and the alterations of renal damage markers, such as HSP72, creatinine clearance, and albuminuria. HGF fully reverted all these, and the cast formation in the tubules was significantly decreased. These findings were associated with the control of renal oxidative stress. In summary, despite HGF enhancing the overload of potentially harmful biliary constituents that the kidney should remove from the bloodstream as an alternative depuration organ in cholestasis, it simultaneously protects the kidney from this damage by counteracting the prooxidant effects resulting from this harmful exposure.


Assuntos
Colestase/tratamento farmacológico , Fator de Crescimento de Hepatócito/farmacologia , Nefropatias/fisiopatologia , 1-Naftilisotiocianato/efeitos adversos , 1-Naftilisotiocianato/farmacologia , Animais , Antioxidantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/fisiopatologia , Colestase/sangue , Colestase/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/metabolismo , Rim/metabolismo , Nefropatias/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Hepatology ; 52(4): 1465-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20815017

RESUMO

UNLABELLED: Estradiol 17ß-D-glucuronide (E(2)17G) is an endogenous, cholestatic metabolite that induces endocytic internalization of the canalicular transporters relevant to bile secretion: bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). We assessed whether phosphoinositide 3-kinase (PI3K) is involved in E(2)17G-induced cholestasis. E(2)17G activated PI3K according to an assessment of the phosphorylation of the final PI3K effector, protein kinase B (Akt). When the PI3K inhibitor wortmannin (WM) was preadministered to isolated rat hepatocyte couplets (IRHCs), it partially prevented the reduction induced by E(2)17G in the proportion of IRHCs secreting fluorescent Bsep and Mrp2 substrates (cholyl lysyl fluorescein and glutathione methylfluorescein, respectively). 2-Morpholin-4-yl-8-phenylchromen-4-one, another PI3K inhibitor, and an Akt inhibitor (Calbiochem 124005) showed similar protective effects. IRHC immunostaining and confocal microscopy analysis revealed that endocytic internalization of Bsep and Mrp2 induced by E(2)17G was extensively prevented by WM; this effect was fully blocked by the microtubule-disrupting agent colchicine. The protection of WM was additive to that afforded by the classical protein kinase C (cPKC) inhibitor 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile (Gö6976); this suggested differential and complementary involvement of the PI3K and cPKC signaling pathways in E(2)17G-induced cholestasis. In isolated perfused rat liver, an intraportal injection of E(2)17G triggered endocytosis of Bsep and Mrp2, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Bsep and Mrp2 substrates [(3)H]taurocholate and glutathione until the end of the perfusion period. Unlike Gö6976, WM did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of Bsep and Mrp2 into the canalicular membrane in a microtubule-dependent manner. CONCLUSION: The PI3K/Akt signaling pathway is involved in the biliary secretory failure induced by E(2)17G through sustained internalization of canalicular transporters endocytosed via cPKC.


Assuntos
1-Fosfatidilinositol 4-Quinase/fisiologia , Colestase/induzido quimicamente , Proteína Quinase C/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Androstadienos/farmacologia , Animais , Canalículos Biliares/efeitos dos fármacos , Canalículos Biliares/fisiologia , Sistema Biliar/metabolismo , Carbazóis/farmacologia , Colchicina/farmacologia , Endocitose/efeitos dos fármacos , Estradiol/análogos & derivados , Glutationa/metabolismo , Técnicas In Vitro , Masculino , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Perfusão , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Transdução de Sinais , Ácido Taurocólico/metabolismo , Wortmanina
20.
Clin Sci (Lond) ; 121(12): 523-44, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21854363

RESUMO

UDCA (ursodeoxycholic acid) is the therapeutic agent most widely used for the treatment of cholestatic hepatopathies. Its use has expanded to other kinds of hepatic diseases, and even to extrahepatic ones. Such versatility is the result of its multiple mechanisms of action. UDCA stabilizes plasma membranes against cytolysis by tensioactive bile acids accumulated in cholestasis. UDCA also halts apoptosis by preventing the formation of mitochondrial pores, membrane recruitment of death receptors and endoplasmic-reticulum stress. In addition, UDCA induces changes in the expression of metabolizing enzymes and transporters that reduce bile acid cytotoxicity and improve renal excretion. Its capability to positively modulate ductular bile flow helps to preserve the integrity of bile ducts. UDCA also prevents the endocytic internalization of canalicular transporters, a common feature in cholestasis. Finally, UDCA has immunomodulatory properties that limit the exacerbated immunological response occurring in autoimmune cholestatic diseases by counteracting the overexpression of MHC antigens and perhaps by limiting the production of cytokines by immunocompetent cells. Owing to this multi-functionality, it is difficult to envisage a substitute for UDCA that combines as many hepatoprotective effects with such efficacy. We predict a long-lasting use of UDCA as the therapeutic agent of choice in cholestasis.


Assuntos
Colagogos e Coleréticos/farmacologia , Colestase/tratamento farmacológico , Ácido Ursodesoxicólico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/fisiologia , Canalículos Biliares/efeitos dos fármacos , Colagogos e Coleréticos/uso terapêutico , Colestase/patologia , Colestase/fisiopatologia , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ácido Ursodesoxicólico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa