RESUMO
Plasmodium falciparum is the main causative agent of human malaria. During the intraerythrocytic development cycle, the P. falciparum morphology changes dramatically from circulating young rings to sequestered mature trophozoites and schizonts. Sequestered forms contribute to the pathophysiology of severe malaria as the infected erythrocytes obstruct the microvascular flow in deep organs and induce local inflammation. However, the sequestration mechanism limits the access to the corresponding parasitic form in the clinical samples from patients infected with P. falciparum. To complement this deficiency, we aimed to evaluate the relevance of mRNA study as a proxy of protein expression in sequestered parasites. To do so, we conducted a proteotranscriptomic analysis using five independent P. falciparum laboratory strain samples. RNA sequencing was performed, and the mRNA expression level was assessed on circulating ring-stage parasites. The level of protein expression were measured by LC-MS/MS on the corresponding sequestered mature forms after 18-24 h of maturation. Overall, our results showed a strong transcriptome/transcriptome and a very strong proteome/proteome correlation between samples. Moreover, positive correlations of mRNA and protein expression levels were found between ring-stage transcriptomes and mature form proteomes. However, twice more transcripts were identified at the ring stage than proteins at the mature trophozoite stage. A high level of transcript expression did not guarantee the detection of the corresponding protein. Finally, we pointed out discrepancies at the individual gene level. Taken together, our results show that transcript and protein expressions are overall correlated. However, mRNA abundance is not a perfect proxy of protein expression at the individual level. Importantly, our study shows limitations of the "blind" use of RNA-seq and the importance of multiomics approaches for P. falciparum blood stage study in clinical samples.
Assuntos
Malária Falciparum , Plasmodium falciparum , Cromatografia Líquida , Eritrócitos , Humanos , Plasmodium falciparum/genética , Espectrometria de Massas em TandemRESUMO
Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.
Assuntos
Síndromes Mielodisplásicas , Estruturas R-Loop , Humanos , Fator de Processamento U2AF/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de RNA/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Mutação , Fatores de Transcrição/genética , Fosfoproteínas/genéticaRESUMO
Transcription factor Forkhead box P1 (FOXP1) belongs to the same protein family as the FOXOs that are well-known regulators of murine hematopoietic stem progenitor cell (HSPC) maintenance via dampening oxidative stress. FOXP1 and FOXOs can play opposite, or similar, roles depending on cell context; they can crossregulate each other's expression. In a previous study, we have shown that FOXP1 contributes to healthy human HSPC and acute myeloid leukemia (AML) cell growth. Here, we investigated the role of FOXP1 in HSPCs and AML cell oxidative stress defense in a human context. FOXP1 expression level was associated with an inferior survival outcome in patients with cytogenetically normal AML. FOXP1 knockdown enhanced superoxide anion levels of human-committed CD34+CD38+ cells but not stem cell-enriched CD34+CD38- HSPCs or AML cells in vitro. FOXP1 knockdown triggered enhanced NRF2 activity and increased cell oxidative stress. FOXP1 had no impact on FOXO1/3/4 expression in these cells; genetic and pharmacological inhibition of FOXOs did not change superoxide anion levels of human HSPCs or AML cells. Moreover, FOXP1 antioxidant activity was independent of changes in expression of superoxide dismutase 1 and 2 or catalase. Instead, FOXP1 upregulated expression of the stress sensor SIRT1 by stabilizing SIRT1 protein. FOXP1 loss sensitized AML cells to chemotherapy. Together, this study identified FOXP1 as a new safeguard against myeloid progenitor oxidative stress, which works independently of FOXOs but through SIRT1 and contributes to AML chemoresistance. It proposes FOXP1 expression/activity as a promising target to overcome drug resistance of AML HSPCs.
Assuntos
Leucemia Mieloide Aguda , Sirtuína 1 , Humanos , Animais , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxidos/metabolismo , Leucemia Mieloide Aguda/genética , Células-Tronco Hematopoéticas/metabolismo , Estresse Oxidativo , Proteínas Repressoras/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismoRESUMO
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies.
Assuntos
Molécula 1 de Adesão Celular/metabolismo , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Molécula 1 de Adesão Celular/genética , Deleção Cromossômica , Cromossomos Humanos Par 11 , Feminino , Genes Supressores de Tumor , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologiaRESUMO
BACKGROUND: PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addition, PfEMP1 variability is endless and current publicly available protein repositories do not reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1 protein sequences expressed with samples remains challenging. The aim of our study is to identify the different PfEMP1 proteins variants expressed within patient samples, and therefore identify PfEMP1 proteins domains expressed by patients presenting uncomplicated malaria or severe malaria in malaria endemic setting in Cotonou, Benin. METHODS: We performed a multi-omic approach to decipher PfEMP1 expression at the patient's level in different clinical settings. Using a combination of whole genome sequencing approach and RNA sequencing, we were able to identify new PfEMP1 sequences and created a new custom protein database. This database was used for protein identification in mass spectrometry analysis. RESULTS: The differential expression analysis of RNAsequencing data shows an increased expression of the var domains transcripts DBLα1.7, DBLα1.1, DBLα2 and DBLß12 in samples from patients suffering from Cerebral Malaria compared to Uncomplicated Malaria. Our approach allowed us to attribute PfEMP1 sequences to each sample and identify new peptides associated to PfEMP1 proteins in mass spectrometry. CONCLUSION: We highlighted the diversity of the PfEMP1 sequences from field sample compared to reference sequences repositories and confirmed the validity of our approach. These findings should contribute to further vaccine development strategies based on PfEMP1 proteins.
Assuntos
Genômica , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Espectrometria de Massas em Tandem , Benin , Cromatografia Líquida , Humanos , Peptídeos/metabolismo , Proteogenômica , Proteoma/metabolismo , Proteínas de Protozoários/genéticaRESUMO
Myelodysplastic syndromes (MDS) with ring sideroblasts are hematopoietic stem cell disorders with erythroid dysplasia and mutations in the SF3B1 splicing factor gene. Patients with MDS with SF3B1 mutations often accumulate excessive tissue iron, even in the absence of transfusions, but the mechanisms that are responsible for their parenchymal iron overload are unknown. Body iron content, tissue distribution, and the supply of iron for erythropoiesis are controlled by the hormone hepcidin, which is regulated by erythroblasts through secretion of the erythroid hormone erythroferrone (ERFE). Here, we identified an alternative ERFE transcript in patients with MDS with the SF3B1 mutation. Induction of this ERFE transcript in primary SF3B1-mutated bone marrow erythroblasts generated a variant protein that maintained the capacity to suppress hepcidin transcription. Plasma concentrations of ERFE were higher in patients with MDS with an SF3B1 gene mutation than in patients with SF3B1 wild-type MDS. Thus, hepcidin suppression by a variant ERFE is likely responsible for the increased iron loading in patients with SF3B1-mutated MDS, suggesting that ERFE could be targeted to prevent iron-mediated toxicity. The expression of the variant ERFE transcript that was restricted to SF3B1-mutated erythroblasts decreased in lenalidomide-responsive anemic patients, identifying variant ERFE as a specific biomarker of clonal erythropoiesis.