Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(17): 2751-2770, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37427997

RESUMO

The ZAK gene encodes two functionally distinct kinases, ZAKα and ZAKß. Homozygous loss of function mutations affecting both isoforms causes a congenital muscle disease. ZAKß is the only isoform expressed in skeletal muscle and is activated by muscle contraction and cellular compression. The ZAKß substrates in skeletal muscle or the mechanism whereby ZAKß senses mechanical stress remains to be determined. To gain insights into the pathogenic mechanism, we exploited ZAK-deficient cell lines, zebrafish, mice and a human biopsy. ZAK-deficient mice and zebrafish show a mild phenotype. In mice, comparative histopathology data from regeneration, overloading, ageing and sex conditions indicate that while age and activity are drivers of the pathology, ZAKß appears to have a marginal role in myoblast fusion in vitro or muscle regeneration in vivo. The presence of SYNPO2, BAG3 and Filamin C (FLNC) in a phosphoproteomics assay and extended analyses suggested a role for ZAKß in the turnover of FLNC. Immunofluorescence analysis of muscle sections from mice and a human biopsy showed evidence of FLNC and BAG3 accumulations as well as other myofibrillar myopathy markers. Moreover, endogenous overloading of skeletal muscle exacerbated the presence of fibres with FLNC accumulations in mice, indicating that ZAKß signalling is necessary for an adaptive turnover of FLNC that allows for the normal physiological response to sustained mechanical stress. We suggest that accumulation of mislocalized FLNC and BAG3 in highly immunoreactive fibres contributes to the pathogenic mechanism of ZAK deficiency.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Filaminas/genética , Filaminas/metabolismo , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/metabolismo , Isoformas de Proteínas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-39448255

RESUMO

BACKGROUND: Myosin heavy chain 7 (MYH7)-related myopathies (MYH7-RMs) are a group of muscle disorders linked to pathogenic variants in the MYH7 gene, encoding the slow/beta-cardiac myosin heavy chain, which is highly expressed in skeletal muscle and heart. The phenotype is heterogeneous including distal, predominantly axial or scapuloperoneal myopathies with variable cardiac involvement. METHODS: We retrospectively analysed the clinical, muscle MRI, genetic and myopathological features of 57 MYH7 patients. Patients received a thorough neurological (n=57, 100%), cardiac (n=51, 89%) and respiratory (n=45, 79%) assessment. Muscle imaging findings and muscle biopsies were reappraised in 19 (33%) and 27 (47%) patients, respectively. RESULTS: We identified three phenotypes with varying degrees of overlap: distal myopathy (70%), scapuloperoneal (23%) and axial with peculiar cervical spine rigidity called the 'sphinx' phenotype (7%). 14% of patients had either dilated cardiomyopathy, hypertrophic cardiomyopathy or left ventricular non-compaction cardiomyopathy. 31% of patients had prominent respiratory involvement, including all patients with the 'sphinx' phenotype. Muscle MRI showed involvement of tibialis anterior, followed by quadriceps, and erector spinae in patients with axial phenotype. Cores represented the most common myopathological lesion. We report 26 pathogenic variants of MYH7 gene, 9 of which are novel. CONCLUSIONS: MYH7-RMs have a large phenotypic spectrum, including distal, scapuloperoneal or axial weakness, and variable cardiac and respiratory involvement. Tibialis anterior is constantly and precociously affected both clinically and on muscle imaging. Cores represent the most common myopathological lesion. Our detailed description of MYH7-RMs should improve their recognition and management.

3.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
4.
Neuropathol Appl Neurobiol ; : e12952, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124360

RESUMO

AIMS: Limb-girdle congenital myasthenic syndrome (LG-CMS) is a genetically heterogeneous disorder characterized by muscle weakness and fatigability. The LG-CMS gene DPAGT1 codes for an essential enzyme of the glycosylation pathway, a posttranslational modification mechanism shaping the structure and function of proteins. In DPAGT1-related LG-CMS, reduced glycosylation of the acetylcholine receptor (AChR) reduces its localization at the neuromuscular junction (NMJ), and results in diminished neuromuscular transmission. LG-CMS patients also show tubular aggregates on muscle biopsy, but the origin and potential contribution of the aggregates to disease development are not understood. Here, we describe two LG-CMS patients with the aim of providing a molecular diagnosis and to shed light on the pathways implicated in tubular aggregate formation. METHODS: Following clinical examination of the patients, we performed next-generation sequencing (NGS) to identify the genetic causes, analysed the biopsies at the histological and ultrastructural levels, investigated the composition of the tubular aggregates, and performed experiments on protein glycosylation. RESULTS: We identified novel pathogenic DPAGT1 variants in both patients, and pyridostigmine treatment quantitatively improved muscle force and function. The tubular aggregates contained proteins of the sarcoplasmic reticulum (SR) and structurally conformed to the aggregates observed in tubular aggregate myopathy (TAM). TAM arises from overactivation of the plasma membrane calcium channel ORAI1, and functional studies on muscle extracts from our LG-CMS patients evidenced abnormal ORAI1 glycosylation. CONCLUSIONS: We expand the genetic variant spectrum of LG-CMS and provide a genotype/phenotype correlation for pathogenic DPAGT1 variants. The discovery of ORAI1 hypoglycosylation in our patients highlights a physiopathological link between LG-CMS and TAM.

5.
Eur J Neurol ; 30(8): 2506-2517, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37166430

RESUMO

BACKGROUND AND PURPOSE: CAV3 gene mutations, mostly inherited as an autosomal dominant trait, cause various skeletal muscle diseases. Clinical presentations encompass proximal myopathy, distal myopathy, or isolated persistent high creatine kinase (CK) with a major overlapping phenotype. METHODS: Twenty-three patients with CAV3 symptomatic mutations, from 16 different families, were included in a retrospective cohort. Mean follow-up duration was 24.2 ± 15.0 years. Clinical and functional data were collected during the follow-up. The results of muscle imaging, electroneuromyography, muscle histopathology, immunohistochemistry, and caveolin-3 Western blot analysis were also compiled. RESULTS: Exercise intolerance was the most common phenotype (52%). Eighty percent of patients had calf hypertrophy, and only 65% of patients presented rippling. One patient presented initially with camptocormia. A walking aid was required in only two patients. Electroneuromyography was mostly normal. CK level was elevated in all patients. No patient had cardiac or respiratory impairment. Muscle imaging showed fatty involvement of semimembranosus, semitendinosus, rectus femoris, biceps brachialis, and spinal muscles. Almost all (87%) of the biopsies were abnormal but without any specific pattern. Whereas a quarter of patients had normal caveolin-3 immunohistochemistry results, Western blots disclosed a reduced amount of the protein. We report nine mutations, including four not previously described. No phenotype-genotype correlation was evidenced. CONCLUSIONS: Caveolinopathy has diverse clinical, muscle imaging, and histological presentations but often has limited functional impact. Mild forms of the disease, an atypical phenotype, and normal caveolin-3 immunostaining are pitfalls leading to misdiagnosis.


Assuntos
Caveolina 3 , Doenças Musculares , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Estudos Retrospectivos , Seguimentos , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Doenças Musculares/metabolismo , Músculo Esquelético/patologia , Mutação/genética
6.
Eur J Neurol ; 29(8): 2398-2411, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460302

RESUMO

BACKGROUND AND PURPOSE: Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS: A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS: Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION: Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.


Assuntos
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Diagnóstico Tardio , Humanos , Mutação/genética , Mialgia , Paralisia , Estudos Retrospectivos
7.
J Med Genet ; 58(9): 602-608, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32994279

RESUMO

BACKGROUND: Congenital nemaline myopathies are rare pathologies characterised by muscle weakness and rod-shaped inclusions in the muscle fibres. METHODS: Using next-generation sequencing, we identified three patients with pathogenic variants in the Troponin T type 1 (TNNT1) gene, coding for the troponin T (TNT) skeletal muscle isoform. RESULTS: The clinical phenotype was similar in all patients, associating hypotonia, orthopaedic deformities and progressive chronic respiratory failure, leading to early death. The anatomopathological phenotype was characterised by a disproportion in the muscle fibre size, endomysial fibrosis and nemaline rods. Molecular analyses of TNNT1 revealed a homozygous deletion of exons 8 and 9 in patient 1; a heterozygous nonsense mutation in exon 9 and retention of part of intron 4 in muscle transcripts in patient 2; and a homozygous, very early nonsense mutation in patient 3.Western blot analyses confirmed the absence of the TNT protein resulting from these mutations. DISCUSSION: The clinical and anatomopathological presentations of our patients reinforce the homogeneous character of the phenotype associated with recessive TNNT1 mutations. Previous studies revealed an impact of recessive variants on the tropomyosin-binding affinity of TNT. We report in our patients a complete loss of TNT protein due to open reading frame disruption or to post-translational degradation of TNT.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/genética , Fenótipo , Troponina T/genética , Biópsia , Pré-Escolar , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Imuno-Histoquímica , Lactente , Análise de Sequência de DNA , Deleção de Sequência , Troponina T/metabolismo
8.
Ann Neurol ; 88(2): 274-282, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32386344

RESUMO

OBJECTIVE: Glycogen storage diseases (GSDs) are severe human disorders resulting from abnormal glucose metabolism, and all previously described GSDs segregate as autosomal recessive or X-linked traits. In this study, we aimed to molecularly characterize the first family with a dominant GSD. METHODS: We describe a dominant GSD family with 13 affected members presenting with adult-onset muscle weakness, and we provide clinical, metabolic, histological, and ultrastructural data. We performed exome sequencing to uncover the causative gene, and functional experiments in the cell model and on recombinant proteins to investigate the pathogenic effect of the identified mutation. RESULTS: We identified a heterozygous missense mutation in PYGM segregating with the disease in the family. PYGM codes for myophosphorylase, the enzyme catalyzing the initial step of glycogen breakdown. Enzymatic tests revealed that the PYGM mutation impairs the AMP-independent myophosphorylase activity, whereas the AMP-dependent activity was preserved. Further functional investigations demonstrated an altered conformation and aggregation of mutant myophosphorylase, and the concurrent accumulation of the intermediate filament desmin in the myofibers of the patients. INTERPRETATION: Overall, this study describes the first example of a dominant glycogen storage disease in humans, and elucidates the underlying pathomechanisms by deciphering the sequence of events from the PYGM mutation to the accumulation of glycogen in the muscle fibers. ANN NEUROL 2020;88:274-282.


Assuntos
Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Mutação/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
9.
Ann Neurol ; 87(2): 217-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794073

RESUMO

OBJECTIVE: Recently, the ASC-1 complex has been identified as a mechanistic link between amyotrophic lateral sclerosis and spinal muscular atrophy (SMA), and 3 mutations of the ASC-1 gene TRIP4 have been associated with SMA or congenital myopathy. Our goal was to define ASC-1 neuromuscular function and the phenotypical spectrum associated with TRIP4 mutations. METHODS: Clinical, molecular, histological, and magnetic resonance imaging studies were made in 5 families with 7 novel TRIP4 mutations. Fluorescence activated cell sorting and Western blot were performed in patient-derived fibroblasts and muscles and in Trip4 knocked-down C2C12 cells. RESULTS: All mutations caused ASC-1 protein depletion. The clinical phenotype was purely myopathic, ranging from lethal neonatal to mild ambulatory adult patients. It included early onset axial and proximal weakness, scoliosis, rigid spine, dysmorphic facies, cutaneous involvement, respiratory failure, and in the older cases, dilated cardiomyopathy. Muscle biopsies showed multiminicores, nemaline rods, cytoplasmic bodies, caps, central nuclei, rimmed fibers, and/or mild endomysial fibrosis. ASC-1 depletion in C2C12 and in patient-derived fibroblasts and muscles caused accelerated proliferation, altered expression of cell cycle proteins, and/or shortening of the G0/G1 cell cycle phase leading to cell size reduction. INTERPRETATION: Our results expand the phenotypical and molecular spectrum of TRIP4-associated disease to include mild adult forms with or without cardiomyopathy, associate ASC-1 depletion with isolated primary muscle involvement, and establish TRIP4 as a causative gene for several congenital muscle diseases, including nemaline, core, centronuclear, and cytoplasmic-body myopathies. They also identify ASC-1 as a novel cell cycle regulator with a key role in cell proliferation, and underline transcriptional coregulation defects as a novel pathophysiological mechanism. ANN NEUROL 2020;87:217-232.


Assuntos
Sistema y+ de Transporte de Aminoácidos/fisiologia , Ciclo Celular/fisiologia , Doenças Musculares/fisiopatologia , Fatores de Transcrição/genética , Adulto , Sistema y+ de Transporte de Aminoácidos/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/fisiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Mutação , Linhagem , Fenótipo
10.
Ann Neurol ; 88(2): 332-347, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32403198

RESUMO

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Assuntos
Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Geraniltranstransferase/genética , Perda Auditiva/genética , Distrofias Musculares/genética , Mutação/genética , Insuficiência Ovariana Primária/genética , Adolescente , Adulto , Animais , Feminino , Técnicas de Introdução de Genes/métodos , Perda Auditiva/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofias Musculares/diagnóstico por imagem , Linhagem , Insuficiência Ovariana Primária/diagnóstico por imagem , Estrutura Secundária de Proteína , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos , Adulto Jovem
11.
Acta Neuropathol ; 142(2): 375-393, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974137

RESUMO

Using deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. In our study all patients presented with highly similar clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.


Assuntos
Miopatias Distais/patologia , Proteínas Musculares/genética , Músculo Esquelético/patologia , Mutação de Sentido Incorreto/genética , Adulto , Miopatias Distais/genética , Humanos , Corpos de Inclusão/patologia , Pessoa de Meia-Idade , Debilidade Muscular/patologia , Linhagem , Grânulos de Estresse
12.
J Med Genet ; 56(9): 617-621, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30327447

RESUMO

BACKGROUND: The activating signal cointegrator 1 (ASC-1) complex acts as a transcriptional coactivator for a variety of transcription factors and consists of four subunits: ASCC1, ASCC2, ASCC3 and TRIP4. A single homozygous mutation in ASCC1 has recently been reported in two families with a severe muscle and bone disorder. OBJECTIVE: We aim to contribute to a better understanding of the ASCC1-related disorder. METHODS: Here, we provide a clinical, histological and genetic description of three additional ASCC1 families. RESULTS: All patients presented with severe prenatal-onset muscle weakness, neonatal hypotonia and arthrogryposis, and congenital bone fractures. The muscle biopsies from the affected infants revealed intense oxidative rims beneath the sarcolemma and scattered remnants of sarcomeres with enlarged Z-bands, potentially representing a histopathological hallmark of the disorder. Sequencing identified recessive nonsense or frameshift mutations in ASCC1, including two novel mutations. CONCLUSION: Overall, this work expands the ASCC1 mutation spectrum, sheds light on the muscle histology of the disorder and emphasises the physiological importance of the ASC-1 complex in fetal muscle and bone development.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Proteínas de Transporte/genética , Fraturas Ósseas/congênito , Fraturas Ósseas/diagnóstico , Debilidade Muscular/genética , Mutação , Alelos , Substituição de Aminoácidos , Biópsia , Análise Mutacional de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Linhagem , Fenótipo , Índice de Gravidade de Doença , Sequenciamento do Exoma
13.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396724

RESUMO

Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/ß catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.


Assuntos
Lamina Tipo A/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/etiologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Transdução de Sinais , Animais , Biópsia , Comunicação Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Lamina Tipo A/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Distrofia Muscular do Cíngulo dos Membros/patologia , Junção Neuromuscular/metabolismo , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Hum Mol Genet ; 26(19): 3736-3748, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934386

RESUMO

Myotubularins (MTMs) are active or dead phosphoinositides phosphatases defining a large protein family conserved through evolution and implicated in different neuromuscular diseases. Loss-of-function mutations in MTM1 cause the severe congenital myopathy called myotubular myopathy (or X-linked centronuclear myopathy) while mutations in the MTM1-related protein MTMR2 cause a recessive Charcot-Marie-Tooth peripheral neuropathy. Here we aimed to determine the functional specificity and redundancy of MTM1 and MTMR2, and to assess their abilities to compensate for a potential therapeutic strategy. Using molecular investigations and heterologous expression of human MTMs in yeast cells and in Mtm1 knockout mice, we characterized several naturally occurring MTMR2 isoforms with different activities. We identified the N-terminal domain as responsible for functional differences between MTM1 and MTMR2. An N-terminal extension observed in MTMR2 is absent in MTM1, and only the short MTMR2 isoform lacking this N-terminal extension behaved similarly to MTM1 in yeast and mice. Moreover, adeno-associated virus-mediated exogenous expression of several MTMR2 isoforms ameliorates the myopathic phenotype owing to MTM1 loss, with increased muscle force, reduced myofiber atrophy, and reduction of the intracellular disorganization hallmarks associated with myotubular myopathy. Noteworthy, the short MTMR2 isoform provided a better rescue when compared with the long MTMR2 isoform. In conclusion, these results point to the molecular basis for MTMs functional specificity. They also provide the proof-of-concept that expression of the neuropathy-associated MTMR2 gene improves the MTM1-associated myopathy, thus identifying MTMR2 as a novel therapeutic target for myotubular myopathy.


Assuntos
Miopatias Congênitas Estruturais/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Miopatias Congênitas Estruturais/enzimologia , Miopatias Congênitas Estruturais/metabolismo , Fenótipo , Domínios Proteicos , Isoformas de Proteínas , Proteínas Tirosina Fosfatases não Receptoras/genética
15.
Am J Hum Genet ; 99(5): 1086-1105, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745833

RESUMO

This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.


Assuntos
Núcleo Celular/genética , Miopatias Distais/genética , Variação Genética , Miopatias Congênitas Estruturais/genética , Oxirredutases/genética , Sequência de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Estudos de Coortes , Creatina Quinase/genética , Creatina Quinase/metabolismo , Citoplasma/metabolismo , Miopatias Distais/patologia , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Feminino , Flavoproteínas/metabolismo , Deleção de Genes , Estudo de Associação Genômica Ampla , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Células HEK293 , Humanos , Masculino , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/patologia , Oxirredutases/metabolismo , Linhagem , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peixe-Zebra/genética
16.
Am J Hum Genet ; 99(3): 753-761, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569547

RESUMO

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse.


Assuntos
Apneia/genética , Mutação/genética , Miastenia Gravis/genética , Terminações Pré-Sinápticas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adolescente , Apneia/complicações , Apneia/metabolismo , Apneia/patologia , Artrogripose/complicações , Artrogripose/genética , Butirilcolinesterase/metabolismo , Criança , Pré-Escolar , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Análise Mutacional de DNA , Exoma/genética , Feminino , Genes Recessivos/genética , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Hipotonia Muscular/genética , Debilidade Muscular/complicações , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação de Sentido Incorreto/genética , Miastenia Gravis/complicações , Miastenia Gravis/metabolismo , Miastenia Gravis/patologia , Junção Neuromuscular/enzimologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Terminações Pré-Sinápticas/patologia , Simportadores/deficiência , Transmissão Sináptica
17.
Eur Respir J ; 53(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523161

RESUMO

Amyotrophic lateral sclerosis (ALS) patients show progressive respiratory muscle weakness leading to death from respiratory failure. However, there are no data on diaphragm histological changes in ALS patients and how they correlate with routine respiratory measurements.We collected 39 diaphragm biopsies concomitantly with laparoscopic insertion of intradiaphragmatic electrodes during a randomised controlled trial evaluating early diaphragm pacing in ALS (https://clinicaltrials.gov; NCT01583088). Myofibre type, size and distribution were evaluated by immunofluorescence microscopy and correlated with spirometry, respiratory muscle strength and phrenic nerve conduction parameters. The relationship between these variables and diaphragm atrophy was assessed using multivariate regression models.All patients exhibited significant slow- and fast-twitch diaphragmatic atrophy. Vital capacity (VC), maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP) and twitch transdiaphragmatic pressure did not correlate with the severity of diaphragm atrophy. Inspiratory capacity (IC) correlated modestly with slow-twitch myofibre atrophy. Supine fall in VC correlated weakly with fast-twitch myofibre atrophy. Multivariate analysis showed that IC, SNIP and functional residual capacity were independent predictors of slow-twitch diaphragmatic atrophy, but not fast-twitch atrophy.Routine respiratory tests are poor predictors of diaphragm structural changes. Improved detection of diaphragm atrophy is essential for clinical practice and for management of trials specifically targeting diaphragm muscle function.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Atrofia/diagnóstico , Atrofia/fisiopatologia , Diafragma/fisiopatologia , Respiração , Tecido Adiposo/patologia , Biópsia , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Análise de Regressão , Testes de Função Respiratória , Insuficiência Respiratória/fisiopatologia , Músculos Respiratórios/fisiopatologia , Ultrassonografia , Capacidade Vital
18.
Ann Neurol ; 83(2): 269-282, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29328520

RESUMO

OBJECTIVE: Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS: To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS: Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION: Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.


Assuntos
Actinas/genética , Contração Muscular/fisiologia , Debilidade Muscular/genética , Miopatias Congênitas Estruturais/fisiopatologia , Sarcômeros/patologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/genética , Sarcômeros/fisiologia , Adulto Jovem
19.
Acta Neuropathol ; 137(3): 501-519, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30701273

RESUMO

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.


Assuntos
Actinina/genética , Músculo Esquelético/patologia , Miotonia Congênita/genética , Miotonia Congênita/patologia , Animais , Feminino , Humanos , Masculino , Camundongos , Mutação , Peixe-Zebra
20.
Muscle Nerve ; 59(1): 137-141, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025162

RESUMO

INTRODUCTION: Mutations in the EXOSC3 gene are responsible for type 1 pontocerebellar hypoplasia, an autosomal recessive congenital disorder characterized by cerebellar atrophy, developmental delay, and anterior horn motor neuron degeneration. Muscle biopsies of these patients often show characteristics resembling classic spinal muscle atrophy, but to date, no distinct features have been identified. METHODS: Clinical data and muscle biopsy findings of 3 unrelated patients with EXOSC3 mutations are described. RESULTS: All patients presented as a severe congenital cognitive and neuromuscular phenotype with short survival, harboring the same point mutation (c.92G>C; p.Gly31Ala). Muscle biopsies consistently showed variable degrees of sarcomeric disorganization with myofibrillar remnants, Z-line thickening, and small nemaline bodies. CONCLUSIONS: In this uniform genetic cohort of patients with EXOSC3 mutations, sarcomeric disruption and rod structures were prominent features of muscle biopsies. In the context of neonatal hypotonia, ultrastructural studies might provide early clues for the diagnosis of EXOSC3-related pontocerebellar hypoplasia. Muscle Nerve 59:137-141, 2019.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Músculo Esquelético/patologia , Mutação/genética , Atrofias Olivopontocerebelares/genética , Atrofias Olivopontocerebelares/patologia , Proteínas de Ligação a RNA/genética , Sarcoma/patologia , Biópsia , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Masculino , Músculo Esquelético/ultraestrutura , Miopatias da Nemalina , Sarcoma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa