Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944331

RESUMO

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Assuntos
Imunodeficiência Combinada Severa , Linfócitos T , Humanos , Animais , Camundongos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Edição de Genes , Camundongos SCID , Complexo CD3 , Receptores de Antígenos de Linfócitos T/genética
2.
Stem Cells ; 37(2): 284-294, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30372555

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.


Assuntos
Reparo do DNA/genética , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Humanos , Camundongos
3.
Mol Ther ; 27(8): 1389-1406, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178391

RESUMO

Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the ß-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.


Assuntos
Anemia Falciforme/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Mutação , Globinas beta/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/terapia , Sistemas CRISPR-Cas , Dependovirus , Endonucleases/genética , Expressão Gênica , Marcação de Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Parvovirinae/genética , Doadores de Tecidos , Transdução Genética , Nucleases de Dedos de Zinco/genética
4.
Mol Ther ; 26(2): 468-479, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221806

RESUMO

The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human ß- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in ß-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the ß- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic ß-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target ß-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.


Assuntos
Edição de Genes , Variação Genética , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Conversão Gênica , Rearranjo Gênico , Marcação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Amplificação de Ácido Nucleico , Translocação Genética
5.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25733580

RESUMO

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Assuntos
Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Mutação , Globinas beta/genética , Anemia Falciforme/patologia , Animais , Antígenos CD34/análise , Sequência de Bases , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Endodesoxirribonucleases/metabolismo , Sangue Fetal/transplante , Loci Gênicos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Dedos de Zinco
6.
Cytotherapy ; 19(9): 1096-1112, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28733131

RESUMO

BACKGROUND AIMS: Gene therapy by autologous hematopoietic stem cell transplantation (HSCT) represents a new approach to treat sickle cell disease (SCD). Optimization of the manufacture, characterization and testing of the transduced hematopoietic stem cell final cell product (FCP), as well as an in depth in vivo toxicology study, are critical for advancing this approach to clinical trials. METHODS: Data are shown to evaluate and establish the feasibility of isolating, transducing with the Lenti/ßAS3-FB vector and cryopreserving CD34+ cells from human bone marrow (BM) at clinical scale. In vitro and in vivo characterization of the FCP was performed, showing that all the release criteria were successfully met. In vivo toxicology studies were conducted to evaluate potential toxicity of the Lenti/ßAS3-FB LV in the context of a murine BM transplant. RESULTS: Primary and secondary transplantation did not reveal any toxicity from the lentiviral vector. Additionally, vector integration site analysis of murine and human BM cells did not show any clonal skewing caused by insertion of the Lenti/ßAS3-FB vector in cells from primary and secondary transplanted mice. CONCLUSIONS: We present here a complete protocol, thoroughly optimized to manufacture, characterize and establish safety of a FCP for gene therapy of SCD.


Assuntos
Anemia Falciforme/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Adulto , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea , Transplante de Medula Óssea , Estudos de Casos e Controles , Ensaios Clínicos Fase I como Assunto , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lentivirus/genética , Camundongos Endogâmicos NOD , Transdução Genética , Transplante Autólogo/métodos
7.
Mol Ther ; 24(9): 1561-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406980

RESUMO

Targeted genome editing technology can correct the sickle cell disease mutation of the ß-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the ß-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , Mutação , Reparo Gênico Alvo-Dirigido , Globinas beta/genética , Anemia Falciforme/terapia , Sequência de Bases , Linhagem Celular , Clivagem do DNA , Marcação de Genes , Loci Gênicos , Humanos , Ligação Proteica , RNA Guia de Cinetoplastídeos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
8.
Stem Cells ; 33(5): 1532-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25588820

RESUMO

Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by ß-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-ß(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Transdução Genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Separação Celular , Células Eritroides/citologia , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos Endogâmicos NOD , Receptores de LDL/metabolismo
9.
iScience ; 25(6): 104374, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35633935

RESUMO

Background: A point mutation in sickle cell disease (SCD) alters one amino acid in the ß-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction. Results: An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one ß-globin allele in more than 30% of long-term engrafting human HSCs. After adopting a high-fidelity Cas9 variant, efficient correction with minimal off-target events also was observed. In vivo erythroid differentiation markedly enriches for corrected ß-globin alleles, indicating that erythroblasts carrying one or more corrected alleles have a survival advantage. Significance: These findings indicate that the sickle mutation can be corrected in autologous HSCs with an optimized protocol suitable for clinical translation.

10.
Front Genome Ed ; 2: 601541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713224

RESUMO

Monogenic disorders of the blood system have the potential to be treated by autologous stem cell transplantation of ex vivo genetically modified hematopoietic stem and progenitor cells (HSPCs). The sgRNA/Cas9 system allows for precise modification of the genome at single nucleotide resolution. However, the system is reliant on endogenous cellular DNA repair mechanisms to mend a Cas9-induced double stranded break (DSB), either by the non-homologous end joining (NHEJ) pathway or by the cell-cycle regulated homology-directed repair (HDR) pathway. Here, we describe a panel of ectopically expressed DNA repair factors and Cas9 variants assessed for their ability to promote gene correction by HDR or inhibit gene disruption by NHEJ at the HBB locus. Although transient global overexpression of DNA repair factors did not improve the frequency of gene correction in primary HSPCs, localization of factors to the DSB by fusion to the Cas9 protein did alter repair outcomes toward microhomology-mediated end joining (MMEJ) repair, an HDR event. This strategy may be useful when predictable gene editing outcomes are imperative for therapeutic success.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa