Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(12): 7892-7896, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29161048

RESUMO

An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt41Ni59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.

2.
Inorg Chem ; 56(5): 2589-2595, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28207241

RESUMO

Zero thermal expansion (ZTE) behavior is rare but important for both fundamental studies and practical applications of functional materials. Until now, most available ZTE materials are either electrical insulating oxides or conductive metallic compounds. Very few ZTE materials exhibit the semiconductor feature. Here we report a ZTE in a semiconducting ferroelectric of 0.6PbTiO3-0.4Bi(Co0.55Ti0.45)O3-δ. Its unit cell volume exhibits a negligible change over a broad temperature range from room temperature to 500 °C. The ZTE is supposed to be correlated with the spontaneous volume ferroelectronstriction. Intriguingly, the present ZTE material also exhibits the semiconducting characteristic accompanied by negative temperature coefficient of resistance. The mechanism of electric conduction is attributed to the electronic hopping from one ion (Ti3+) to another (Ti4+). The semiconductor nature has also been confirmed by the noticeable visible-light absorption with the relatively lower band gap (Eg) value of 1.5 eV, while the ferroelectric property can be well-maintained with large polarization. The first-principles calculations reveal that the drastically narrowed Eg is related to the Co-Ti substitution. The present multifunctional material containing ZTE, semiconducting, and ferroelectric properties is suggested to enable new applications such as the substrate for solar conversion devices.

3.
J Am Chem Soc ; 138(44): 14530-14533, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27783492

RESUMO

The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (-6.69 to +18.23 × 10-6/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF6, which is one of the rarely documented high-temperature isotropic ZTE compounds. By utilizing temperature-dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal···F atomic linkages in MZrF6 plays a critical role in distinct thermal expansions. The flexible metal···F atomic linkages induce negative thermal expansion (NTE) for CaZrF6, whereas the stiff ones bring positive thermal expansion (PTE) for NiZrF6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal···F atomic linkages by substitution with a series of cations on M sites of MZrF6. The present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility.

4.
Inorg Chem ; 55(19): 9513-9516, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27631595

RESUMO

Lead-free piezoelectrics have attracted increasing attention because of the awareness of lead toxicity to the environment. Here, a new bismuth-based lead-free perovskite, (1 - x)Bi(Zn0.5Ti0.5)O3-xBiFeO3, has been synthesized via a high-pressure and high-temperature method. It exhibits interesting properties of giant polarization, morphotropic phase boundary (MPB), and monoclinic phase. In particular, large tetragonality (c/a = 1.228) and giant spontaneous polarization of 110 µC/cm2 has been obtained in 0.6 Bi(Zn0.5Ti0.5)O3-0.4BiFeO3, which is much higher than most available lead-free materials and conventional Pb(Zr,Ti)O3. MPB is clearly identified to be constituted of tetragonal and monoclinic phases at x = 0.5. Notably, a single monoclinic phase has been observed at x = 0.6, which exhibits an intriguing high-temperature property. The present results are helpful to explore new lead-free MPB systems in bismuth-based compounds.

5.
Phys Chem Chem Phys ; 18(8): 6247-51, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26854264

RESUMO

Functional materials showing both negative thermal expansion (NTE) and physical performance, such as ferroelectricity and magnetism, have been extensively explored in the past decade. However, among ferroelectrics a remarkable NTE was only found in perovskite-type PbTiO3-based compounds. In this work, a large NTE of -4.7 × 10(-5) K(-1) is obtained in the non-perovskite lead-free ferroelectric Sn2P2S6 from 243 K to TC (338 K). Structure refinements and first-principle calculations reveal the effects of the Sn(ii) 5s-S 3p interaction on spontaneous polarization and its correlation with NTE. Then the mechanism of spontaneous volume ferroelectrostriction (SVFS) is verified and it could well elucidate the nature of NTE in ferroelectric Sn2P2S6. This is the first case to demonstrate the unusual NTE behavior by SVFS in a non-perovskite lead-free ferroelectric material.

6.
J Am Chem Soc ; 136(39): 13566-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25233253

RESUMO

The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.

7.
Inorg Chem ; 53(17): 9174-80, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25116333

RESUMO

The crystal structure and thermal expansion behaviors of a new tetragonal tungsten bronze (TTB) ferroelectric, Pb2K(0.5)Li(0.5)Nb5O15, were systematically investigated by selected-area electron diffraction (SAED), neutron powder diffraction, synchrotron X-ray diffraction (XRD), and high-temperature XRD. SAED and Rietveld refinement reveal that Pb2K(0.5)Li(0.5)Nb5O15 displays a commensurate superstructure of simple orthorhombic TTB structure at room temperature. The structure can be described with space group Bb21m. The transition to a paraelectric phase (P4/mbm) occurs at 500 °C. Compared with Pb2KNb5O15 (PKN), the substitution of 0.5K(+) with small 0.5Li(+) into PKN causes the tilting of NbO6 octahedra away from the c axis with Δθ ≈ 10° and raises the Curie temperature by 40 °C, and the negative thermal expansion coefficient along the polar b axis increases more than 50% in the temperature range 25-500 °C. We present that, by introduction of Li(+), the enhanced spontaneous polarization is responsible for the enhanced negative thermal expansion along the b axis, which may be caused by more Pb(2+) in the pentagonal caves.

8.
Nat Commun ; 8: 14308, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165008

RESUMO

Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.

9.
Dalton Trans ; 45(4): 1554-9, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26687535

RESUMO

Single-phase xNdFeO3-(1 - x)PbTiO3 thin films with different dopant contents were fabricated on the Pt(111)/Ti/SiO2/Si substrate by a sol-gel route. Grain size was influenced by the dopant content effectively. A synchrotron radiation X-ray diffraction study revealed a reduced tetragonality (c/a) of the PbTiO3 lattice in the films. Distortion of the TiO6 octahedron was weakened, as investigated by Raman scattering and X-ray absorption spectra. An electronic structural study indicated that the hybridizations between O 2p and Pb 6s and Ti 3d orbitals were weakened. The decrease of lattice distortion and orbital hybridization gives rise to degradation of the ferroelectric nature in the films.

10.
Adv Mater ; 27(31): 4592-6, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26149472

RESUMO

A magnetic metal-fluoride system is shown for the first time to have a high Curie temperature (≈545 K). The magnetism correlates intimately with the Fe(2+)/Fe(3+) ratio. As the ratio increases, the weak magnetism displayed by unordered magnetic moments intensifies, and these magnetic moments align in parallel. Simultaneously, a magneto-volume effect is also shown to increase the lattice volume.

11.
Dalton Trans ; 43(19): 7037-43, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24622650

RESUMO

The structure and thermal expansion behavior of the tetragonal tungsten bronze oxide Pb2KNb5O15 were investigated by neutron powder diffraction and high-temperature X-ray diffraction. Below the Curie temperature, T(C) (orthorhombic phase, T(C) ≈ 460 °C), the cell parameters a and c increase with temperature, while b decreases. The thermal expansion coefficients are α(a) = 1.29 × 10(-5) °C(-1), α(b) = -1.56 × 10(-5) °C(-1), and α(c) = 1.62 × 10(-5) °C(-1). Temperature-dependent second harmonic generation (SHG), dielectric, and polarization-electrical field (P-E) hysteresis loop measurements were performed to study the symmetry and electric properties. We show that the distortion and cooperative rotation of NbO6 octahedrons are directly responsible for the negative thermal expansion coefficient along the polar b axis. It is suggested that Pb-O covalency, especially in the large and asymmetric pentagonal prisms, may be related to orthorhombic distortion and abnormal spontaneous polarization along the b axis. This study shows that tungsten bronze families are possible candidates for exploring negative thermal expansion materials.

12.
Dalton Trans ; 42(28): 10358-64, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23744518

RESUMO

The single phase Pb(0.8)Co(0.2)TiO3 thin films were synthesized on a Pt/Ti/SiO2/Si substrate by the sol-gel route. The present films exhibited homogeneous microstructure with low porosity. O 1s X-ray photoelectron spectroscopy (XPS) was used to detect the amount of oxygen vacancies. The ferroelectric measurements showed that the ferroelectricity deteriorates with the increase in the number of oxygen vacancies. X-ray absorption spectroscopy (XAS) and XPS were used to study the electronic structure. The results indicated that the decreased ferroelectricity might be ascribed to the weakened hybridization between O 2p and Pb 6s and Ti 3d orbitals. The ferromagnetic behaviors were also observed in the thin films and saturated magnetization raised monotonously with the oxygen vacancy rising due to the enhanced F-center exchange interaction. Magnetoelectric coupling of the films weakened with oxygen vacancy increase.

13.
Dalton Trans ; 42(2): 585-90, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23175154

RESUMO

The applications of ferroelectric thin films such as the sensitivity of nonvolatile ferroelectric random access memories are closely linked with large remnant polarization. The high-T(C) (1-x)Bi(Zn(1/2)Zr(1/2))O(3)-xPbTiO(3) (x = 0.7-0.9) thin films with high (100) orientation were fabricated on Pt(111)/Ti/SiO(2)/Si substrates via a sol-gel method. The thin films could be crystallized well in a phase-pure perovskite structure. The electrical properties of the sol-gel-derived BZZ-PT thin films were investigated. A large remanent polarization with 2P(r) up to 110 µC cm(-2) and a small leakage current of 3.8 × 10(-7) A cm(-2) under an electric field of 150 kV cm(-1) are observed on the 0.2BZZ-0.8PT thin films. Furthermore, a relatively stable polarization fatigue property was achieved, indicating a potential application in high-temperature ferroelectric devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa