RESUMO
<p><b>OBJECTIVE</b>To investigate the possible mechanism of lycopene on protecting against hypoxia/reoxygenation (H/R)-injury.</p><p><b>METHODS</b>Primary cultured cardiomyocytes, isolated from neonatal mouse, were divided into three groups randomly: control group (C) ; H/R group(4 h H followed by 8 h R); lycopene+H/R group(L+H/R), in which the cardiomyocytes were pretreated with lycopene for 4 h before H/R. The survival of cardiomyocytes was counted. Apoptotic cells were detected by TUNEL assays. The release of cytochrome c from mitochondrial matrix into the cytosol, the activity of caspase-3, intracellular ROS levels and the activity of calpain were also determined in these groups respectively at the same time.</p><p><b>RESULTS</b>The pretreatment of cardiomyocytes with lycopene significantly improved the survival of cardiomyocytes [C: (89.84 ± 5.15)%, H/R: (63.59 ± 5.11)%, L+H/R: (79.25 ± 1.48)%, P < 0.05] and reduced the extent of apoptosis [C: ( 10.37 ± 1.25)%, H/R: (32.03 ± 4.79)%, L+H/R: (22.57 ± 3.22)%, P < 0.05], significantly reduced caspase-3 activation [C: (2.61 ± 0.19), H/R: (5.82 ± 0.92), L+H/R: (3.74 ± 0.64) pNA pmol/µg protein, P < 0.05]. To further study the mechanism underlying the benefits of lycopene, interactions between lycopene and calpain activation were examined. Lycopene pretreatment of cardiomyocytes suppressed the activation of calpain(C:272.33 ± 300.46, H/R: 1156.00 ± 212.02, L+H/R: 607.33 ± 166.23, P < 0.05) by reducing the H/R induced increased intracellular ROS levels [C: 100%, H/R: (239.79 ± 27.27)%, L+H/R: (188.19 ± 17.63)%, P < 0.05].</p><p><b>CONCLUSION</b>Lycopene may protect against hypoxia/reoxygenation-induced injury by preventing calpain activation.</p>