Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(18): 4153-4171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797772

RESUMO

This paper introduces an enhanced technique for analyzing iron isotopes in complex marine and biological samples. A dedicated iron purification method for biological marine matrices, utilizing three ion exchange columns, is validated. The MC-ICPMS in pseudo-high-resolution mode determines precise iron isotopic ratios, with sensitivity improved through the DSN-100 desolvating nebulizer system and Apex-IR. Only 2 µg of iron on DSN versus 1 µg on Apex is needed for six replicates (30-60 times improvement) while 10 to 20 µg is required for a single measurement on a wet system considering the resolution power (Rp) is maintained at 11,000-13,000. The Ni-doping method with a Fe/Ni ratio of 1 yields more accurate isotopic ratios than standard-sample bracketing alone. Measurement reproducibility of triplicate samples from marine biological experiments on MC-ICPMS is ± 0.03‰ (2SD) for δ56Fe and ± 0.07‰ for δ57Fe (2SD). This study introduces a novel iron purification process specifically designed for marine and biological samples, enhancing sensitivity and enabling more reliable measurements with smaller sample sizes and reduced uncertainties. It proposes iron isotopic compositions for biological reference materials, offering a valuable reference dataset in diverse scientific disciplines.


Assuntos
Isótopos de Ferro , Espectrometria de Massas , Isótopos de Ferro/análise , Espectrometria de Massas/métodos , Animais , Reprodutibilidade dos Testes , Água do Mar/química , Ferro/análise
2.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443696

RESUMO

The 87Sr/86Sr ratio of 39 Champagnes from six different brands, originating from the whole "Appellation d'Origine Contrôlée" (AOC) Champagne was analyzed to establish a possible relation with the geographical origin. Musts (i.e., grape juice) and base wines were also analyzed to study the evolution of the Sr isotopic ratio during the elaboration process of sparkling wine. The results demonstrate that there is a very homogeneous Sr isotopic ratio (87Sr/86Sr = 0.70812, n = 37) and a narrow span of variability (2σ = 0.00007, n = 37). Moreover, the Sr concentrations in Champagnes have also low variability, which can be in part explained by the homogeneity of the bedrock in the AOC Champagne. Measurements of the 87Sr/86Sr ratio from musts and base wines show that blending during Champagne production plays a major role in the limited variability observed. Further, the 87Sr/86Sr of the musts were closely linked to the 87Sr/86Sr ratio of the vineyard soil. It appears that the 87Sr/86Sr of the product does not change during the elaboration process, but its variability decreases throughout the process due to blending. Both the homogeneity of the soil composition in the Champagne AOC and the blending process during the wine making process with several blending steps at different stages account for the unique and stable Sr isotopic signature of the Champagne wines.


Assuntos
Isótopos de Estrôncio/análise , Vinho/análise , Geografia , Fatores de Tempo , Vitis/química
3.
Rapid Commun Mass Spectrom ; 33(5): 419-428, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496616

RESUMO

RATIONALE: A multi-collector inductively coupled plasma (MC-ICP) mass spectrometer coupled to a UV ns-laser ablation (LA) system was used to measure uranium isotopic ratios (234 U/238 U, 235 U/238 U and 236 U/238 U) in single uranium particles of various sizes and isotopic compositions, including home-made sub-micrometric natural uranium particles of narrow size distribution (415 ± 60 nm). METHODS: The LA-ICP mass spectrometer was operated in wet plasma conditions thanks to simultaneous injection of the laser aerosol and water vapor through a desolvating nebulizer. The isotopic ratios were corrected for mass bias and gain factors between detectors. The 236 U/238 U ratios were also corrected for the presence of 235 U hydrides and tailing of the 238 U+ peak. RESULTS: 236 U/238 U ratios were successfully measured in micrometer-sized particles from the NBS U050 certified standard material with a 236 U/238 U ratio of ~5 × 10-4 . The analysis of 77 natural uranium sub-µm-sized particles yielded a very good trueness with respect to the expected 234 U/238 U and 235 U/238 U ratios, while the measurement errors for single particles ranged from -2.7% to +2.1% for 235 U/238 U and from -17% to +33% for the 234 U/238 U ratios. Their relative combined standard uncertainties ranged from 3.3% to 32.8% and from 0.4% to 4.0% for 234 U/238 U and 235 U/238 U ratios, respectively. In addition, extremely low detection limits, in the attogram range, were achieved. CONCLUSIONS: This study demonstrates that coupling of a ns-laser ablation system with a MC-ICP mass spectrometer allows measurements of the isotopic composition in natural uranium particles of a few hundreds of nm with very good trueness, average combined standard uncertainties of ~1% for 235 U/238 U ratios and 12% for 234 U/238 U ratios, and detections limits of a few ag for minor isotopes.

4.
Talanta ; 234: 122433, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364413

RESUMO

Wine is one of the most counterfeit product and therefore, requires certifying of its origin and provenance. For authentication purposes, analytical strategies for the determination of Sr and Pb isotopic ratios were adapted for Champagne and sparkling wines. All analytical steps have been carefully adapted and optimized regarding sample preparation, mineralization, and purification by resins as well as isotopic composition measurements on 3 different MC ICP-MS instruments. Further, a global approach using an "in-house" reference material of Champagne (ChRM) was realized and used throughout as well as routine analytical conditions to guaranty samples isotopic quality determination over 3 years. These developments allowed to select the best conditions at all steps for reaching the best precision and accuracy to be used under routine conditions for samples origin discrimination. The best condition of mineralization was obtained with a hot block system allowing both efficiency in digestion and high sample throughput. Detailed conditions of purification for both Sr and Pb isotopes were also optimized and discussed. These different optimization steps on the whole analytical chain allowed to estimate a global precision suitable to be used routinely to discriminate the origin of different Champagne samples. For Sr isotopic analysis (87Sr/86Sr), the overall external precision based on preparation replicates of ChRM was 2σ = 0.000024 (n = 36) and for the Pb isotopes analysis (208Pb/206Pb), the precision obtained on ChRM was 2σ = 0.0024 (n = 15). Finally, we have applied these developments by combining both Sr and Pb isotopic ratios in order to discriminate the origin of sparkling wines from around the world. The combined isotopic signature, using both Sr and Pb isotopes ratios, permitted a clear discrimination between certified Champagne wines and other European and Non-European sparkling wines.


Assuntos
Vinho , Isótopos/análise , Chumbo , Análise Espectral , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa