Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 290(48): 28944-52, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26254469

RESUMO

Transmembrane topology of polytopic membrane proteins (PMPs) is established in the endoplasmic reticulum (ER) by the ribosome Sec61-translocon complex (RTC) through iterative cycles of translocation initiation and termination. It remains unknown, however, whether tertiary folding of transmembrane domains begins after the nascent polypeptide integrates into the lipid bilayer or within a proteinaceous environment proximal to translocon components. To address this question, we used cysteine scanning mutagenesis to monitor aqueous accessibility of stalled translation intermediates to determine when, during biogenesis, hydrophilic peptide loops of the aquaporin-4 (AQP4) water channel are delivered to cytosolic and lumenal compartments. Results showed that following ribosome docking on the ER membrane, the nascent polypeptide was shielded from the cytosol as it emerged from the ribosome exit tunnel. Extracellular loops followed a well defined path through the ribosome, the ribosome translocon junction, the Sec61-translocon pore, and into the ER lumen coincident with chain elongation. In contrast, intracellular loops (ICLs) and C-terminalresidues exited the ribosome into a cytosolically shielded environment and remained inaccessible to both cytosolic and lumenal compartments until translation was terminated. Shielding of ICL1 and ICL2, but not the C terminus, became resistant to maneuvers that disrupt electrostatic ribosome interactions. Thus, the early folding landscape of polytopic proteins is shaped by a spatially restricted environment localized within the assembled ribosome translocon complex.


Assuntos
Aquaporina 4/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Ribossomos/metabolismo , Aquaporina 4/química , Aquaporina 4/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Humanos , Membranas Intracelulares/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Estrutura Secundária de Proteína , Ribossomos/química , Ribossomos/genética , Canais de Translocação SEC
2.
Science ; 348(6233): 444-8, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908822

RESUMO

In cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator. During synthesis, folding occurred discretely via sequential compaction of N-terminal, α-helical, and α/ß-core subdomains. Moreover, the timing of these events was critical; premature α-subdomain folding prevented subsequent core formation. This process was facilitated by modulating intrinsic folding propensity in three distinct ways: delaying α-subdomain compaction, facilitating ß-strand intercalation, and optimizing translation kinetics via codon usage. Thus, de novo folding is translationally tuned by an integrated cellular response that shapes the cotranslational folding landscape at critical stages of synthesis.


Assuntos
Códon/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/química , Elongação Traducional da Cadeia Peptídica , Dobramento de Proteína , Sequência de Aminoácidos , Códon/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ribossomos/química , Ribossomos/metabolismo
3.
Methods Mol Biol ; 741: 233-53, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21594789

RESUMO

Cell-free expression systems provide unique tools for understanding CFTR biogenesis because they reconstitute the cellular folding environment and are readily amenable to biochemical and pharmacological manipulation. The most common system for this purpose is rabbit reticulocyte lysate (RRL), supplemented with either canine pancreatic microsomes or semi-permeabilized cells, which has yielded important insights into the folding of CFTR and its individual domains. A common problem in such studies, however, is that biogenesis of large proteins such as CFTR is often inefficient due to low translation processivity, ribosome stalling, and/or premature termination. The first part of this chapter therefore describes parameters that affect in vitro translation of CFTR in RRL. We have found that CFTR expression is uniquely dependent upon 5'- and 3'-untranslated regions (UTRs) of the mRNA. Full-length CFTR expression can be markedly increased using mRNA lacking a 5'-cap analog (G(5')ppp(5')G), whereas the reverse usually holds for smaller proteins and individual CFTR domains. In the context of the full-length mRNA, translation was further stimulated by the presence of a long 3'-UTR. The second part of this chapter describes CFTR translation in lysates derived from cultured mammalian cells including human bronchial epithelial cells. Unfortunately, mammalian cell-derived lysates showed limited ability to sustain full-length CFTR synthesis. However, they provide a unique opportunity to examine specific CFTR domains (i.e., nucleotide-binding domain 1 and transmembrane domain 1) under conditions that more closely resemble the native folding environment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Reticulócitos/citologia , Regiões 3' não Traduzidas/genética , Animais , Extratos Celulares , Linhagem Celular , Sistema Livre de Células/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cães , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Expressão Gênica , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Microssomos/metabolismo , Mutação , Biossíntese de Proteínas , Capuzes de RNA/genética , Coelhos , Reticulócitos/metabolismo , Transcrição Gênica
4.
Biophys J ; 83(6): 3304-14, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12496098

RESUMO

Functional N-methyl-D-aspartate receptors (NMDARs) are heteromultimers formed by NR1 and NR2 subunits. The M3 segment, as contributed by NR1, forms the core of the extracellular vestibule, including binding sites for channel blockers, and represents a critical molecular link between ligand binding and channel opening. Taking advantage of the substituted cysteine accessibility method along with channel block and multivalent coordination, we studied the contribution of the M3 segment in NR2C to the extracellular vestibule. We find that the M3 segment in NR2C, like that in NR1, contributes to the core of the extracellular vestibule. However, the M3 segments from the two subunits are staggered relative to each other in the vertical axis of the channel. Compared to NR1, homologous positions in NR2C, including those in the highly conserved SYTANLAAF motif, are located about four amino acids more externally. The staggering of subunits may represent a key structural feature underlying the distinct functional properties of NMDARs.


Assuntos
Subunidades Proteicas/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Aminacrina/farmacologia , Sequência de Aminoácidos , Animais , Cátions/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Células Cultivadas , Cisteína/química , Cisteína/genética , Espaço Extracelular/química , Espaço Extracelular/fisiologia , Feminino , Ácido Glutâmico/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/fisiologia , Substâncias Macromoleculares , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mesilatos/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/química , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Conformação Proteica , Subunidades Proteicas/química , Receptores de N-Metil-D-Aspartato/química , Homologia de Sequência de Aminoácidos , Prata/farmacologia , Xenopus/fisiologia
5.
Am J Physiol Lung Cell Mol Physiol ; 282(2): L197-206, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11792624

RESUMO

We reported previously that mast cell tryptase is a growth factor for dog tracheal smooth muscle cells. The goals of our current experiments were to determine if tryptase also is mitogenic in cultured human airway smooth muscle cells, to compare its strength as a growth factor with that of other mitogenic serine proteases, and to determine whether its proteolytic actions are required for mitogenesis. Highly purified preparations of human lung beta-tryptase (1-30 nM) caused dose-dependent increases in DNA synthesis in human airway smooth muscle cells. Maximum tryptase-induced increases in DNA synthesis far exceeded those occurring in response to coagulation cascade proteases, such as thrombin, factor Xa, or factor XII, or to other mast cell proteases, such as chymase or mastin. Irreversibly abolishing tryptase's catalytic activity did not alter its effects on increases in DNA synthesis. We conclude that beta-tryptase is a potent mitogenic serine protease in cultured human airway smooth muscle cells. However, its growth stimulatory effects in these cells occur predominantly via nonproteolytic actions.


Assuntos
Mitógenos/metabolismo , Músculo Liso/enzimologia , Serina Endopeptidases/metabolismo , Traqueia/enzimologia , Animais , Anticoagulantes/farmacologia , Becaplermina , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Quimases , DNA/biossíntese , Cães , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Fator XII/farmacologia , Fator Xa/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hemostáticos/farmacologia , Humanos , Hiperplasia , Fator de Crescimento Insulin-Like I/farmacologia , Mastócitos/enzimologia , Mastócitos/imunologia , Mitógenos/farmacologia , Músculo Liso/citologia , Músculo Liso/imunologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , RNA Mensageiro/análise , Receptor PAR-2 , Receptores de Trombina/genética , Serina Endopeptidases/farmacologia , Trombina/farmacologia , Traqueia/citologia , Traqueia/imunologia , Triptases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa