Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Brain ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226694

RESUMO

Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis (MS) and have implications for non-relapsing biological progression. In recent years, the discovery of innovative magnetic resonance imaging (MRI) and PET derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with MS, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted (T1-w) and T2-w scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification, and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a Consensus Statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this Consensus Statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.

2.
J Comput Assist Tomogr ; 48(3): 378-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213070

RESUMO

ABSTRACT: We describe early ex vivo proof-of-concept testing of a novel system composed of a disposable endorectal coil and converging multichannel needle guide with a reusable clamp stand, embedded electronics, and baseplate to allow for endorectal magnetic resonance (MR) imaging and in-bore MRI-targeted biopsy of the prostate as a single integrated procedure. Using prostate phantoms imaged with standard T 2 -weighted sequences in a Siemens 3T Prisma MR scanner, we measured the signal-to-noise ratio in successive 1-cm distances from the novel coil and from a commercially available inflatable balloon coil and measured the lateral and longitudinal deviation of the tip of a deployed MR compatible needle from the intended target point. Signal-to-noise ratio obtained with the novel system was significantly better than the inflatable balloon coil at each of five 1-cm intervals, with a mean improvement of 78% ( P < 0.05). In a representative sampling of 15 guidance channels, the mean lateral deviation for MR imaging-guided needle positioning was 1.7 mm and the mean longitudinal deviation was 2.0 mm. Our ex vivo results suggest that our novel system provides significantly improved signal-to-noise ratio when compared with an inflatable balloon coil and is capable of accurate MRI-guided needle deployment.


Assuntos
Desenho de Equipamento , Biópsia Guiada por Imagem , Imagens de Fantasmas , Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/patologia , Biópsia Guiada por Imagem/métodos , Biópsia Guiada por Imagem/instrumentação , Imagem por Ressonância Magnética Intervencionista/métodos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/métodos , Reto/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38609673

RESUMO

The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.

4.
NMR Biomed ; 36(1): e4781, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654608

RESUMO

Evidence mounts that the steady-state cellular water efflux (unidirectional) first-order rate constant (kio [s-1 ]) magnitude reflects the ongoing, cellular metabolic rate of the cytolemmal Na+ , K+ -ATPase (NKA), c MRNKA (pmol [ATP consumed by NKA]/s/cell), perhaps biology's most vital enzyme. Optimal 1 H2 O MR kio determinations require paramagnetic contrast agents (CAs) in model systems. However, results suggest that the homeostatic metabolic kio biomarker magnitude in vivo is often too large to be reached with allowable or possible CA living tissue distributions. Thus, we seek a noninvasive (CA-free) method to determine kio in vivo. Because membrane water permeability has long been considered important in tissue water diffusion, we turn to the well-known diffusion-weighted MRI (DWI) modality. To analyze the diffusion tensor magnitude, we use a parsimoniously primitive model featuring Monte Carlo simulations of water diffusion in virtual ensembles comprising water-filled and -immersed randomly sized/shaped contracted Voronoi cells. We find this requires two additional, cytometric properties: the mean cell volume (V [pL]) and the cell number density (ρ [cells/µL]), important biomarkers in their own right. We call this approach metabolic activity diffusion imaging (MADI). We simulate water molecule displacements and transverse MR signal decays covering the entirety of b-space from pure water (ρ = V = 0; kio undefined; diffusion coefficient, D0 ) to zero diffusion. The MADI model confirms that, in compartmented spaces with semipermeable boundaries, diffusion cannot be described as Gaussian: the nanoscopic D (Dn ) is diffusion time-dependent, a manifestation of the "diffusion dispersion". When the "well-mixed" (steady-state) condition is reached, diffusion becomes limited, mainly by the probabilities of (1) encountering (ρ, V), and (2) permeating (kio ) cytoplasmic membranes, and less so by Dn magnitudes. Importantly, for spaces with large area/volume (A/V; claustrophobia) ratios, this can happen in less than a millisecond. The model matches literature experimental data well, with implications for DWI interpretations.


Assuntos
Diagnóstico por Imagem , Água , Ativação Metabólica
5.
NMR Biomed ; 36(1): e4782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654761

RESUMO

We introduce a new 1 H2 O magnetic resonance approach: metabolic activity diffusion imaging (MADI). Numerical diffusion-weighted imaging decay simulations characterized by the mean cellular water efflux (unidirectional) rate constant (kio ), mean cell volume (V), and cell number density (ρ) are produced from Monte Carlo random walks in virtual stochastically sized/shaped cell ensembles. Because of active steady-state trans-membrane water cycling (AWC), kio reflects the cytolemmal Na+ , K+ ATPase (NKA) homeostatic cellular metabolic rate (c MRNKA ). A digital 3D "library" contains thousands of simulated single diffusion-encoded (SDE) decays. Library entries match well with disparate, animal, and human experimental SDE decays. The V and ρ values are consistent with estimates from pertinent in vitro cytometric and ex vivo histopathological literature: in vivo V and ρ values were previously unavailable. The library allows noniterative pixel-by-pixel experimental SDE decay library matchings that can be used to advantage. They yield proof-of-concept MADI parametric mappings of the awake, resting human brain. These reflect the tissue morphology seen in conventional MRI. While V is larger in gray matter (GM) than in white matter (WM), the reverse is true for ρ. Many brain structures have kio values too large for current, invasive methods. For example, the median WM kio is 22s-1 ; likely reflecting mostly exchange within myelin. The kio •V product map displays brain tissue c MRNKA variation. The GM activity correlates, quantitatively and qualitatively, with the analogous resting-state brain 18 FDG-PET tissue glucose consumption rate (t MRglucose ) map; but noninvasively, with higher spatial resolution, and no pharmacokinetic requirement. The cortex, thalamus, putamen, and caudate exhibit elevated metabolic activity. MADI accuracy and precision are assessed. The results are contextualized with literature overall homeostatic brain glucose consumption and ATP production/consumption measures. The MADI/PET results suggest different GM and WM metabolic pathways. Preliminary human prostate results are also presented.


Assuntos
Descanso , ATPase Trocadora de Sódio-Potássio , Humanos , Mapeamento Encefálico , Glucose , Água
6.
Brain ; 144(7): 1974-1984, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33757115

RESUMO

Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.


Assuntos
Encéfalo/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Humanos
7.
Muscle Nerve ; 63(2): 192-198, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188573

RESUMO

INTRODUCTION: In this study we explored walking activity in a large cohort of boys with Duchenne muscular dystrophy (DMD). METHODS: Step activity (monitored for 7 days), functional ability, and strength were quantified in ambulatory boys (5-12.9 years of age) with DMD and unaffected boys. Ambulatory status was determined 2 years later. RESULTS: Two to 5 days of activity monitoring predicted weekly step activity (adjusted R2 = 0.80-0.95). Age comparisons revealed significant declines for step activity with increasing age, and relationships were found between step activity with both function and strength (P < .01). Our regression model predicted 36.5% of the variance in step activity. Those who were still ambulatory after 2 years demonstrated baseline step activity nearly double that of those who were no longer walking 2 years later (P < .01). DISCUSSION: Step activity for DMD is related to and predictive of functional declines, which may be useful for clinical trials.


Assuntos
Exercício Físico , Distrofia Muscular de Duchenne/fisiopatologia , Caminhada , Acelerometria , Atividades Cotidianas , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Progressão da Doença , Estado Funcional , Glucocorticoides/uso terapêutico , Humanos , Masculino , Limitação da Mobilidade , Distrofia Muscular de Duchenne/tratamento farmacológico
8.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199898

RESUMO

In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.


Assuntos
Transtornos Cerebrovasculares/patologia , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/patologia , Síndrome Metabólica/patologia , Animais , Transtornos Cerebrovasculares/etiologia , Modelos Animais de Doenças , Dislipidemias/induzido quimicamente , Dislipidemias/complicações , Humanos , Síndrome Metabólica/genética , Roedores , Especificidade da Espécie , Pesquisa Translacional Biomédica
9.
Radiology ; 295(3): 616-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286193

RESUMO

Background Upper extremity MRI and proton MR spectroscopy are increasingly considered to be outcome measures in Duchenne muscular dystrophy (DMD) clinical trials. Purpose To demonstrate the feasibility of acquiring upper extremity MRI and proton (1H) MR spectroscopy measures of T2 and fat fraction in a large, multicenter cohort (ImagingDMD) of ambulatory and nonambulatory individuals with DMD; compare upper and lower extremity muscles by using MRI and 1H MR spectroscopy; and correlate upper extremity MRI and 1H MR spectroscopy measures to function. Materials and Methods In this prospective cross-sectional study, MRI and 1H MR spectroscopy and functional assessment data were acquired from participants with DMD and unaffected control participants at three centers (from January 28, 2016, to April 24, 2018). T2 maps of the shoulder, upper arm, forearm, thigh, and calf were generated from a spin-echo sequence (repetition time msec/echo time msec, 3000/20-320). Fat fraction maps were generated from chemical shift-encoded imaging (eight echo times). Fat fraction and 1H2O T2 in the deltoid and biceps brachii were measured from single-voxel 1H MR spectroscopy (9000/11-243). Groups were compared by using Mann-Whitney test, and relationships between MRI and 1H MR spectroscopy and arm function were assessed by using Spearman correlation. Results This study evaluated 119 male participants with DMD (mean age, 12 years ± 3 [standard deviation]) and 38 unaffected male control participants (mean age, 12 years ± 3). Deltoid and biceps brachii muscles were different in participants with DMD versus control participants in all age groups by using quantitative T2 MRI (P < .001) and 1H MR spectroscopy fat fraction (P < .05). The deltoid, biceps brachii, and triceps brachii were affected to the same extent (P > .05) as the soleus and medial gastrocnemius. Negative correlations were observed between arm function and MRI (T2: range among muscles, ρ = -0.53 to -0.73 [P < .01]; fat fraction, ρ = -0.49 to -0.70 [P < .01]) and 1H MR spectroscopy fat fraction (ρ = -0.64 to -0.71; P < .01). Conclusion This multicenter study demonstrated early and progressive involvement of upper extremity muscles in Duchenne muscular dystrophy (DMD) and showed the feasibility of MRI and 1H MR spectroscopy to track disease progression over a wide range of ages in participants with DMD. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Braço/diagnóstico por imagem , Perna (Membro)/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adolescente , Estudos de Casos e Controles , Criança , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Estudos de Viabilidade , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Estudos Prospectivos
10.
J Magn Reson Imaging ; 50(3): 878-888, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30652391

RESUMO

BACKGROUND: MRI is the imaging modality of choice for diagnosis and intervention assessment in neurological disease. Its full potential has not been realized due in part to challenges in harmonizing advanced techniques across multiple sites. PURPOSE: To develop a method for the assessment of reliability and repeatability of advanced multisite-multisession neuroimaging studies and specifically to assess the reliability of an advanced MRI protocol, including multiband fMRI and diffusion tensor MRI, in a multisite setting. STUDY TYPE: Prospective. POPULATION: Twice repeated measurement of a single subject with stable relapsing-remitting multiple sclerosis (MS) at seven institutions. FIELD STRENGTH/SEQUENCE: A 3 T MRI protocol included higher spatial resolution anatomical scans, a variable flip-angle longitudinal relaxation rate constant (R1 ≡ 1/T1 ) measurement, quantitative magnetization transfer imaging, diffusion tensor imaging, and a resting-state fMRI (rsFMRI) series. ASSESSMENT: Multiple methods of assessing intrasite repeatability and intersite reliability were evaluated for imaging metrics derived from each sequence. STATISTICAL TESTS: Student's t-test, Pearson's r, and intraclass correlation coefficient (ICC) (2,1) were employed to assess repeatability and reliability. Two new statistical metrics are introduced that frame reliability and repeatability in the respective units of the measurements themselves. RESULTS: Intrasite repeatability was excellent for quantitative R1 , magnetization transfer ratio (MTR), and diffusion-weighted imaging (DWI) based metrics (r > 0.95). rsFMRI metrics were less repeatable (r = 0.8). Intersite reliability was excellent for R1 , MTR, and DWI (ICC >0.9), and moderate for rsFMRI metrics (ICC∼0.4). DATA CONCLUSION: From most reliable to least, using a new reliability metric introduced here, MTR > R1 > DWI > rsFMRI; for repeatability, MTR > DWI > R1 > rsFMRI. A graphical method for at-a-glance assessment of reliability and repeatability, effect sizes, and outlier identification in multisite-multisession neuroimaging studies is introduced. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:878-888.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Encéfalo/patologia , Protocolos Clínicos , Imagem de Tensor de Difusão/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos Prospectivos , Reprodutibilidade dos Testes
11.
NMR Biomed ; 31(9): e3951, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30011109

RESUMO

The use of quantitative imaging biomarkers in the imaging of various disease states, including cancer and neurodegenerative disease, has increased in recent years. T1 , T2 , and T2 * relaxation time constants have been shown to be affected by tissue structure or contrast infusion. Acquiring these biomarkers simultaneously in a multi-parametric acquisition could provide more robust detection of tissue changes in various disease states including neurodegeneration and cancer. Traditional magnetic resonance fingerprinting (MRF) has been shown to provide quick, quantitative mapping of T1 and T2 relaxation time constants. In this study, T2 * relaxation is added to the MRF framework using variable echo times (TE). To demonstrate the feasibility of the method and compare incremental and golden angle spiral rotations, simulated phantom data was fit using the proposed method. Additionally, T1 /T2 /T2 */δf MRF as well as conventional T1 , T2 , and T2 * acquisitions were acquired in agar phantoms and the brains of three healthy volunteers. Golden angle spiral rotation was found to reduce inaccuracy resulting from off resonance effects. Strong correlations were found between conventional and MRF values in the T1 , T2 , and T2 * relaxation time constants of the agar phantoms and healthy volunteers. In this study, T2 * relaxation has been incorporated into the MRF framework by using variable echo times, while still fitting for T1 and T2 relaxation time constants. In addition to fitting these relaxation time constants, a novel method for fitting and correcting off resonance effects has been developed.


Assuntos
Imageamento por Ressonância Magnética , Adulto , Encéfalo/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Masculino , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo , Adulto Jovem
12.
J Magn Reson Imaging ; 48(2): 441-448, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29314418

RESUMO

BACKGROUND: Cerebral blood volume (CBV) mapping with a dynamic susceptibility contrast (DSC) perfusion technique has become a clinical tool in diagnosing and follow-up of brain tumors. Ferumoxytol, a long-circulating iron oxide nanoparticle, has been tested for CBV mapping, but the optimal dose has not been established. PURPOSE: To compare ferumoxytol DSC of two different doses to standard of care gadoteridol by analyzing time-intensity curves and CBV maps in normal-appearing brain regions. STUDY TYPE: Retrospective. SUBJECTS: Fifty-four patients with various brain disorders. FIELD STRENGTH/SEQUENCE: 3T MRI. DSC-MRI was performed with 0.1 mmol/kg gadoteridol and 1 day later with ferumoxytol in doses of 1 or 2 mg/kg. ASSESSMENT: Signal changes during first pass, relative CBV (rCBV) in normal-appearing thalamus, putamen, and globus pallidus, and contrast-to-noise ratio (CNR) of the CBV maps were compared between gadoteridol and various doses of ferumoxytol using an automated method. To subjectively assess the quality of the CBV maps, two blinded readers also assessed visual conspicuity of the putamen. STATISTICAL TESTS: Linear mixed effect model was used for statistical comparison. RESULTS: Compared to gadoteridol, 1 mg/kg ferumoxytol showed no difference in CNR (P = 0.6505), peak ΔR2*, and rCBV in the putamen (P = 0.2669, 0.0871) or in the thalamus (P = 0.517, 0.9787); 2 mg/kg ferumoxytol increased peak ΔR2* as well as the CNR (P < 0.0001), but also mildly increased rCBV in putamen and globus pallidus (P = 0.0005, 0.0012). Signal intensities during first pass remained highly above the noise level, with overlapping of 95% confidence intervals with noise only in 3 out of 162 tested regions. Compared to gadoteridol, the visual image quality showed mild improvement with 1 mg/kg (P = 0.02) and marked improvement with 2 mg/kg ferumoxytol (P < 0.0001). DATA CONCLUSION: 1 mg/kg ferumoxytol provides similar imaging results to standard gadoteridol for DSC-MRI, and 2 mg/kg has a benefit of increased CNR, but may also result in mildly increased rCBV values. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:441-448.


Assuntos
Circulação Cerebrovascular , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Compostos Heterocíclicos/química , Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Adulto , Idoso , Mapeamento Encefálico , Meios de Contraste , Feminino , Gadolínio/química , Humanos , Masculino , Nanopartículas Metálicas , Pessoa de Meia-Idade , Perfusão , Estudos Retrospectivos
13.
Kidney Int ; 92(1): 47-66, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28434822

RESUMO

Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.


Assuntos
Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Animais , Atlas como Assunto , Pré-Escolar , Meios de Contraste/efeitos adversos , Meios de Contraste/farmacocinética , Feminino , Óxido Ferroso-Férrico/efeitos adversos , Óxido Ferroso-Férrico/farmacocinética , Hematínicos/administração & dosagem , Humanos , Rim/fisiopatologia , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Eliminação Renal , Insuficiência Renal Crônica/fisiopatologia , Reprodutibilidade dos Testes
14.
Ann Neurol ; 79(4): 535-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891991

RESUMO

OBJECTIVE: The aim of this study was to describe Duchenne muscular dystrophy (DMD) disease progression in the lower extremity muscles over 12 months using quantitative magnetic resonance (MR) biomarkers, collected across three sites in a large cohort. METHODS: A total of 109 ambulatory boys with DMD (8.7 ± 2.0 years; range, 5.0-12.9) completed baseline and 1-year follow-up quantitative MR imaging (transverse relaxation time constant; MRI-T2 ), MR spectroscopy (fat fraction and (1) H2 O T2 ), and 6-minute walk test (6MWT) measurements. A subset of boys completed additional measurements after 3 or 6 months. RESULTS: MRI-T2 and fat fraction increased significantly over 12 months in all age groups, including in 5- to 6.9-year-old boys. Significant increases in vastus lateralis (VL) fat fraction were observed in 3 and 6 months. Even in boys whose 6MWT performance improved or remained stable over 1 year, significant increases in MRI-T2 and fat fraction were found. Of all the muscles examined, the VL and biceps femoris long head were the most responsive to disease progression in boys with DMD. INTERPRETATION: MR biomarkers are responsive to disease progression in 5- to 12.9-year-old boys with DMD and able to detect subclinical disease progression in DMD, even within short (3-6 months) time periods. The measured sensitivity of MR biomarkers in this multicenter study may be critically important to future clinical trials, allowing for smaller sample sizes and/or shorter study windows in this fatal rare disease.


Assuntos
Progressão da Doença , Perna (Membro)/patologia , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Biomarcadores , Criança , Pré-Escolar , Teste de Esforço , Humanos , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Distrofia Muscular de Duchenne/fisiopatologia
15.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28885746

RESUMO

Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K2 leakage correction approach, in which the K2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (KL ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage rate constant, and even make it time dependent.


Assuntos
Meios de Contraste , Extravasamento de Materiais Terapêuticos e Diagnósticos , Imageamento por Ressonância Magnética/métodos , Volume Sanguíneo , Humanos
16.
MAGMA ; 29(3): 617-39, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27194154

RESUMO

An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Anisotropia , Axônios/patologia , Encéfalo/patologia , Mapeamento Encefálico/métodos , Simulação por Computador , Metabolismo Energético , Glucose/análise , Temperatura Alta , Humanos , Movimento (Física) , Neurônios/patologia , Permeabilidade , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/química , Espectrofotometria , Imagem Corporal Total
17.
NMR Biomed ; 28(6): 607-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25914365

RESUMO

Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 µL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na(+),K(+)-ATPase activity. Cerebral k(po) maps represent metabolic (functional) neuroimages. The NGM 2.9 s(-1) k(po) means an equilibrium unidirectional water efflux of ~10(15) H2O molecules s(-1) per capillary (in 1 µL tissue): consistent with the known ATP consumption rate and water co-transporting membrane symporter stoichiometries.


Assuntos
Água Corporal/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Capilares/metabolismo , Glioblastoma/metabolismo , Neuroimagem/métodos , Adulto , Encéfalo/irrigação sanguínea , Neoplasias Encefálicas/irrigação sanguínea , Permeabilidade Capilar , Feminino , Glioblastoma/irrigação sanguínea , Humanos , Aumento da Imagem/métodos , Masculino , Taxa de Depuração Metabólica
18.
Magn Reson Med ; 71(1): 375-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23468414

RESUMO

PURPOSE: Magnetic resonance T1 -weighted images are routinely used for human brain segmentation, brain parcellation, and clinical diagnosis of demyelinating diseases. Myelin is thought to influence the longitudinal relaxation commonly described by a mono-exponential recovery, although reports of bi-exponential longitudinal relaxation have been published. The purpose of this work was to investigate if a myelin water T1 contribution could be separated in geometrically sampled Look-Locker trains of low flip angle gradient echoes. METHODS: T1 relaxograms from normal human brain were computed by a spatially regularized inverse Laplace transform after estimating the apparent inversion efficiency. RESULTS: With sufficiently long inversion-time sampling (ca. 5 × T1 of cerebrospinal fluid), the T1 relaxogram revealed a short-T1 peak (106-225 ms). The apparent fraction of this water component increased in human brain white matter from 8.3% at 3 T, to 11.3% at 4 T and 15.0% at 7 T. The T2 * of the short-T1 peak at 3 T was shorter, 27.9 ± 13.0 ms, than that of the long-T1 peak, 51.3 ± 5.6 ms. CONCLUSION: The short-T1 fraction is interpreted as the water resident in myelin. Its detection is facilitated by longer T1 of axoplasmic water at higher magnetic field.


Assuntos
Água Corporal/química , Química Encefálica , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Bainha de Mielina/química , Adulto , Feminino , Humanos , Campos Magnéticos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
19.
Magn Reson Med ; 72(1): 8-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24006208

RESUMO

PURPOSE: The relationship between fat fractions (FFs) determined based on multiple TE, unipolar gradient echo images and (1) H magnetic resonance spectroscopy (MRS) was evaluated using different models for fat-water decomposition, signal-to-noise ratios, and excitation flip angles. METHODS: A combination of single-voxel proton spectroscopy ((1) H-MRS) and gradient echo imaging was used to determine muscle FFs in both normal and dystrophic muscles. In order to cover a large range of FFs, the soleus and vastus lateralis muscles of 22 unaffected control subjects, 16 subjects with collagen VI deficiency (COL6), and 71 subjects with Duchenne muscular dystrophy (DMD) were studied. (1) H-MRS-based FF were corrected for the increased muscle (1) H2 O T1 and T2 values observed in dystrophic muscles. RESULTS: Excellent agreement was found between coregistered FFs derived from gradient echo images fit to a multipeak model with noise bias correction and the relaxation-corrected (1) H-MRS FFs (y = 0.93x + 0.003; R(2) = 0.96) across the full range of FFs. Relaxation-corrected (1) H-MRS FFs and imaging-based FFs were significantly elevated (P < 0.01) in the muscles of COL6 and DMD subjects. CONCLUSION: FFs, T2 , and T1 were all sensitive to muscle involvement in dystrophic muscle. MRI offered an additional advantage over single-voxel spectroscopy in that the tissue heterogeneity in FFs could be readily determined.


Assuntos
Tecido Adiposo/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Distrofia Muscular de Duchenne/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Colágeno Tipo IV/deficiência , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído
20.
NMR Biomed ; 27(7): 760-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798066

RESUMO

Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here - transcytolemmal water exchange - is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while K(trans) (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)(2), parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 10(13) H2O molecules s(-1)/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW (active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na(+), K(+)-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Espaço Intracelular/metabolismo , Imageamento por Ressonância Magnética/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Tamanho Celular , Meios de Contraste , Feminino , Humanos , Cinética , Permeabilidade , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa