Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 149(20): 204307, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501256

RESUMO

Energy selected and mass-resolved electron-ion coincidence spectra of heavy water have been recorded for ionization energies from 18 to 35 eV. Dissociation from the B2B2 state produces both O+ and D2 + at energies near their thermodynamic thresholds in addition to the known products D+ and OD+. The relative yields of O+, OD+, and D+ in the B2B2 state breakdown diagram are modulated by the vibrational structure of the B-state population, implying incomplete energy equilibration before fragmentation. Decay from the C-state produces OD+ in addition to the known O+ and D+. The fragment kinetic energies suggest that O+ and D+ from the C state are the products of full atomization of the molecule.

2.
Phys Chem Chem Phys ; 18(36): 25705-25710, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711372

RESUMO

We show that the proportion of double Auger decay following creation of single 1s core holes in molecules containing C, N and O atoms is greater than usually assumed, amounting to about 10% of single Auger decay in many cases. It varies from molecule to molecule, where the size of the molecule has a positive correlation to the amount of double Auger decay. In neon, examined as a related benchmark, the proportion of double Auger decay is similar to that in methane, and is in the order of 5%.

3.
Sci Rep ; 10(1): 1246, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988321

RESUMO

L-shell ionisation and subsequent Coulomb explosion of fully deuterated methyl iodide, CD3I, irradiated with hard X-rays has been examined by a time-of-flight multi-ion coincidence technique. The core vacancies relax efficiently by Auger cascades, leading to charge states up to 16+. The dynamics of the Coulomb explosion process are investigated by calculating the ions' flight times numerically based on a geometric model of the experimental apparatus, for comparison with the experimental data. A parametric model of the explosion, previously introduced for multi-photon induced Coulomb explosion, is applied in numerical simulations, giving good agreement with the experimental results for medium charge states. Deviations for higher charges suggest the need to include nuclear motion in a putatively more complete model. Detection efficiency corrections from the simulations are used to determine the true distributions of molecular charge states produced by initial L1, L2 and L3 ionisation.

4.
Sci Rep ; 10(1): 2288, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042092

RESUMO

Double and triple ionisation spectra of the reactive molecule isocyanic acid (HNCO) have been measured using multi-electron and ion coincidence techniques combined with synchrotron radiation and compared with high-level theoretical calculations. Vertical double ionisation at an energy of 32.8 ± 0.3 eV forms the 3A" ground state in which the HNCO2+ ion is long lived. The vertical triple ionisation energy is determined as 65 ± 1 eV. The core-valence double ionisation spectra resemble the valence photoelectron spectrum in form, and their main features can be understood on the basis of a simple and rather widely applicable Coulomb model based on the characteristics of the molecular orbitals from which electrons are removed. Characteristics of the most important dissociation channels are examined and discussed.

5.
Sci Rep ; 9(1): 17883, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784628

RESUMO

We present experimental results on the characteristic sharing of available excess energy, ranging from 11-221 eV, between two electrons in single-photon direct double ionization of He. An effective parametrization of the sharing distributions is presented along with an empirical model that describes the complete shape of the distribution based on a single experimentally determinable parameter. The measured total energy sharing distributions are separated into two distributions representing the shake-off and knock-out parts by simulating the sharing distribution curves expected from a pure wave collapse after a sudden removal of the primary electron. In this way, empirical knock-out distributions are extracted and both the shake-off and knock-out distributions are parametrized. These results suggest a simple method that can be applied to other atomic and molecular systems to experimentally study important aspects of the direct double ionization process.

6.
Sci Rep ; 8(1): 16405, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401877

RESUMO

Systematic measurements of electron emission following formation of single 1s or 2p core holes in molecules with C, O, F, Si, S and Cl atoms show that overall triple ionization can make up as much as 20% of the decay. The proportion of triple ionization is observed to follow a linear trend correlated to the number of available valence electrons on the atom bearing the initial core hole and on closest neighbouring atoms, where the interatomic distance is assumed to play a large role. The amounts of triple ionization (double Auger decay) after 1s or 2p core hole formation follow the same linear trend, which indicates that the hole identity is not a crucial determining factor in the number of electrons emitted. The observed linear trend for the percentage of double Auger decay follows a predictive line equation of the form DA = 0.415 · Nve + 5.46.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa