Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 43(16-17): 1746-1754, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35656648

RESUMO

The laser print, cut, and laminate (PCL) method for microfluidic device fabrication can be leveraged for rapid and inexpensive prototyping of electrophoretic microchips useful for optimizing separation conditions. The rapid prototyping capability allows the evaluation of fluidic architecture, applied fields, reagent concentrations, and sieving matrix, all within the context of using fluorescence-compatible substrates. Cyclic olefin copolymer and toner-coated polyethylene terephthalate (tPeT) were utilized with the PCL technique and bonding methods optimized to improve device durability during electrophoresis. A series of separation channel designs and centrifugation conditions that provided successful loading of sieving polymer in less than 3 min was described. Separation of a 400-base DNA sizing ladder provided calculated base resolution between 3 and 4 bases, a greater than 18-fold improvement over separations on similar substrates. Finally, the accuracy and precision capabilities of these devices were demonstrated by separating and sizing DNA fragments of 147 and 167 bases as 148.62 ± 2 and 166.48 ± 3 bases, respectively.


Assuntos
DNA , Dispositivos Lab-On-A-Chip , Centrifugação , DNA/análise , Eletroforese , Polímeros
2.
Analyst ; 141(15): 4667-75, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27250903

RESUMO

To date, the forensic community regards solid phase extraction (SPE) as the most effective methodology for the purification of DNA for use in short tandem repeat (STR) polymerase chain reaction (PCR) amplification. While a dominant methodology, SPE protocols generally necessitate the use of PCR inhibitors (guanidine, IPA) and, in addition, can demand timescales of up to 30 min due to the necessary load, wash and elution steps. The recent discovery and characterization of the EA1 protease has allowed the user to enzymatically extract (not purify) DNA, dramatically simplifying the task of producing a PCR-ready template. Despite this, this procedure has yet to make a significant impact on microfluidic technologies. Here, we describe a microfluidic device that implements the EA1 enzyme for DNA extraction by incorporating it into a hybrid microdevice comprising laminated polyester (Pe) and PMMA layers. The PMMA layer provides a macro-to-micro interface for introducing the biological sample into the microfluidic architecture, whilst also possessing the necessary dimensions to function as the swab acceptor. Pre-loaded reagents are then introduced to the swab chamber centrifugally, initiating DNA extraction at 75 °C. The extraction of DNA occurs in timescales of less than 3 min and any external hardware associated with the transportation of reagents by pneumatic pumping is eliminated. Finally, multiplexing is demonstrated with a circular device containing eight separate chambers for the simultaneous processing of eight buccal swab samples. The studies here provide DNA concentrations up to 10 ng µL(-1) with a 100% success rate in less than 3 minutes. The STR profiles generated using these extracted samples demonstrate that the DNA is of PCR forensic-quality and adequate for human identification.


Assuntos
DNA/isolamento & purificação , Enzimas , Técnicas Analíticas Microfluídicas , Polimetil Metacrilato , Humanos , Poliésteres , Reação em Cadeia da Polimerase
3.
Anal Chem ; 86(16): 8192-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25091472

RESUMO

A system that automatically performs the PCR amplification and microchip electrophoretic (ME) separation for rapid forensic short tandem repeat (STR) forensic profiling in a single disposable plastic chip is demonstrated. The microchip subassays were optimized to deliver results comparable to conventional benchtop methods. The microchip process was accomplished in sub-90 min compared with >2.5 h for the conventional approach. An infrared laser with a noncontact temperature sensing system was optimized for a 45 min PCR compared with the conventional 90 min amplification time. The separation conditions were optimized using LPA-co-dihexylacrylamide block copolymers specifically designed for microchip separations to achieve accurate DNA size calling in an effective length of 7 cm in a plastic microchip. This effective separation length is less than half of other reports for integrated STR analysis and allows a compact, inexpensive microchip design. This separation quality was maintained when integrated with microchip PCR. Thirty samples were analyzed conventionally and then compared with data generated by the microfluidic chip system. The microfluidic system allele calling was 100% concordant with the conventional process. This study also investigated allelic ladder consistency over time. The PCR-ME genetic profiles were analyzed using binning palettes generated from two sets of allelic ladders run three and six months apart. Using these binning palettes, no allele calling errors were detected in the 30 samples demonstrating that a microfluidic platform can be highly consistent over long periods of time.


Assuntos
DNA/análise , Eletroforese em Microchip/instrumentação , Reação em Cadeia da Polimerase Multiplex/instrumentação , Desenho de Equipamento , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação
4.
Anal Chem ; 83(3): 982-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214255

RESUMO

In this report, we demonstrate the purification of DNA and RNA from a 10% serum sample using an oligonucleotide capture matrix. This approach provides a one-stage, completely aqueous system capable of purifying both RNA and DNA for downstream PCR amplification. The advantages of utilizing the polymer capture matrix method in place of the solid-phase extraction method is that the capture matrix eliminates both guanidine and the 2-propanol wash that can inhibit downstream PCR and competition with proteins for the binding sites that can limit the capacity of the device. This method electrophoreses a biological sample (e.g., serum) containing the nucleic acid target through a polymer matrix with covalently bound oligonucleotides. These capture oligonucleotides selectively hybridize and retain the target nucleic acid, while the other biomolecules and reagents (e.g., SDS) pass through the matrix to waste. Following this purification step, the solution can be heated above the melting temperature of the capture sequence to release the target molecule, which is then electrophoresed to a recovery chamber for subsequent PCR amplification. We demonstrate that the device can be applied to purify both DNA and RNA from serum. The gag region of HIV at a starting concentration of 37.5 copies per microliter was successfully purified from a 10% serum sample demonstrating the applicability of this method to detect viruses present in low copy numbers.


Assuntos
Resinas Acrílicas/química , HIV/química , Técnicas Analíticas Microfluídicas/métodos , RNA Viral/isolamento & purificação , Técnicas Analíticas Microfluídicas/instrumentação , Reação em Cadeia da Polimerase/métodos , RNA Viral/sangue
5.
Proc Natl Acad Sci U S A ; 105(2): 476-81, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184818

RESUMO

To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require approximately 70 min to deliver approximately 650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered "hybrid" mechanism of DNA electromigration, in which DNA molecules alternate rapidly between repeating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs.


Assuntos
Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , DNA/análise , DNA de Cadeia Simples/química , Desenho de Equipamento , Genoma Humano , Humanos , Microscopia de Vídeo/métodos , Polímeros/química , Reprodutibilidade dos Testes , Fatores de Tempo
6.
Electrophoresis ; 30(12): 2117-22, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19582712

RESUMO

We demonstrate the use of an acid-labile surfactant (ALS) as a replacement for SDS for size-based protein separations in a microfluidic device. ALS is of interest to the proteomic field as it degrades at low pH and hence can be removed to reduce surfactant interference with down-stream MS. A range of SDS and ALS concentrations were tested as denaturants for microchip electrophoresis to investigate their effects on the separation of proteins from 18 to 116 kDa and to provide a suitable comparison between the two surfactants. The electrophoretic mobilities of the proteins were not significantly affected by the use of ALS instead of SDS. Protein separations with ALS are performed in less than 3 min, which is a significant decrease in the time compared with the previous ALS separations on a slab gel format. We also demonstrate the use of poly-N-hydroxyethylacrylamide as a dynamic, hydrophilic chip channel coating that can be applied with a rapid and simple protocol for size-based protein separation. The results reported here could significantly decrease the time and increase the attainable level of automation and integration of the front-end protein fractionation required for "top-down" proteomics.


Assuntos
Eletroforese em Microchip/métodos , Proteínas/isolamento & purificação , Tensoativos/química , Concentração de Íons de Hidrogênio , Peso Molecular , Dodecilsulfato de Sódio/química
7.
Anal Chim Acta ; 980: 41-49, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28622802

RESUMO

Forensic DNA analysis requires several steps, including DNA extraction, PCR amplification, and separation of PCR fragments. Intuitively, there are numerous situations where it would be beneficial to speed up the overall DNA analysis process; in this work, we focus on the most time-consuming component in the analysis pipeline, namely the polymerase chain reaction (PCR). Primers were specially designed to target 10 human genomic loci, all yielding amplicons shorter than 350 bases, for ease of downstream integration with on-board microchip electrophoresis. Primer concentrations were adjusted specifically for microdevice amplification, resulting in well-balanced short tandem repeat (STR) profiles. Furthermore, studies were performed to push the limits of the DNA polymerase to achieve rapid, multiplexed PCR on various substrates, including transparent and black polyethylene terephthalate (Pe), and with two distinct adhesives, toner and heat sensitive adhesive (HSA). Rapid STR-based multiplexed PCR amplification is demonstrated in 15 min on a Pe microdevice using a custom-built system for fluid flow control and thermocycling for the full 10-plex, and in 10 min for a smaller multiplex consisting of six core CODIS loci plus Amelogenin with amplicons shorter than 200bp. Lastly, preliminary studies indicate the capability of this PCR microdevice platform to be integrated with both upstream DNA extraction, and downstream microchip electrophoresis. This, coupled to the use of reagents that are compatible with lyophilization (lyo-compatible) for PCR, represents the potential for a fully integrated rotationally-driven microdevice for complete forensic DNA analysis.


Assuntos
Eletroforese em Microchip , Genética Forense , Repetições de Microssatélites , Técnicas de Amplificação de Ácido Nucleico , DNA , Humanos , Reação em Cadeia da Polimerase
8.
Lab Chip ; 16(23): 4569-4580, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766331

RESUMO

Current conventional methods utilized for forensic DNA analysis are time consuming and labor-intensive requiring large and expensive equipment and instrumentation. While more portable Rapid DNA systems have been developed, introducing them to a working laboratory still necessitates a high cost of initiation followed by the recurrent cost of the devices. This has highlighted the need for an inexpensive, rapid and portable DNA analysis tool for human identification in a forensic setting. In order for an integrated DNA analysis system such as this to be realized, device operations must always be concluded by a rapid separation of short-tandem repeat (STR) DNA fragments. Contributing to this, we report the development of a unique, multi-level, centrifugal microdevice that can perform both reagent loading and DNA separation. The fabrication protocol was inspired by the print, cut and laminate (PCL) technique described previously by our group, and in accordance, offers a rapid and inexpensive option compared with existing approaches. The device comprises multiple polyester-toner fluidic layers, a cyclic olefin copolymer separation domain and integrated gold leaf electrodes. All materials are commercially-available and complement the PCL process in a way that permits fabrication of increasingly sought after single-use devices. All reagents, including a viscous sieving matrix, are loaded centrifugally, eliminating external pneumatic pumping, and the sample is separated in <5 minutes using an effective separation length of only 4 cm (reagent loading to completed separation, is <37 minutes). The protocol for gold leaf electrode manufacture yielded up to 30 electrodes for less than $3 (cost of a 79 mm × 79 mm gold leaf sheet) and when using a device combining these electrodes and centrifugal reagent/polymer loading, the electrophoretic separation of STR fragments with two base resolution was demonstrated. This exemplary performance makes the device an ideal candidate for further integration and development of an inexpensive, portable and rapid forensic human identification system.


Assuntos
Centrifugação/instrumentação , DNA/isolamento & purificação , Eletroforese/instrumentação , Ouro , Dispositivos Lab-On-A-Chip , Eletrodos , Desenho de Equipamento , Fatores de Tempo
9.
Lab Chip ; 14(22): 4415-25, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25248520

RESUMO

A fully integrated microfluidic chip for human identification by short tandem repeat (STR) analysis that includes a unique enzymatic liquid preparation of the DNA, microliter non-contact PCR, and a polymer that allows a high-resolution separation within a compact microchip footprint has been developed. A heat-activated enzyme that digests biological materials is employed to generate the target yield of DNA from a buccal swab or FTA paper. The microfluidic architecture meters an aliquot of the liberated DNA and mixes it with the PCR reagents prior to non-contact IR-mediated PCR amplification. The products of PCR amplification are mixed with a sizing standard (ladder) and the 18-plex STR amplicons are separated in an effective length (Leff) of just 7 cm. The development, optimization and integration of each of these processes within the microfluidic chip are described. The device is able to generate genetic profiles in approximately 2 hours that match the profiles from the conventional processes performed using separate conventional instruments. Analysis is performed on a single plastic microchip with a size similar to that of a 96-well plate and only a few mm thick with no pretreatment of any of the functional domains. This is significant advancement in terms of ease of fabrication over glass microdevices or polymeric systems assembled from multiple components. Consequently, this fully integrated sample-in-answer-out microchip is an important step toward generation of a rapid micro-total analysis system for point-of-collection human identification based on genetic analysis.


Assuntos
DNA/análise , Eletroforese em Microchip/instrumentação , Repetições de Microssatélites , DNA/genética , DNA/isolamento & purificação , Desenho de Equipamento , Humanos , Reação em Cadeia da Polimerase/instrumentação
10.
Electrophoresis ; 29(23): 4677-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053065

RESUMO

In recent years, there has been an increasing demand for a wide range of DNA separations that require the development of materials to meet the needs of high resolution and high throughput. Here, we demonstrate the use of thermoresponsive N-alkoxyalkylacrylamide polymers as a sieving matrix for DNA separations on a microfluidic chip. The viscosities of the N-alkoxyalkylacrylamide polymers are more than an order of magnitude lower than that of a linear polyacrylamide (LPA) of corresponding molecular weight, allowing rapid loading of the microchip. At 25 degrees C, N-alkoxyalkylacrylamide polymers can provide improved DNA separations compared with LPA in terms of reduced separation time and increased separation efficiency, particularly for the larger DNA fragments. The improved separation efficiency in N-alkoxyalkylacrylamide polymers is attributed to the peak widths increasing only slightly with DNA fragment size, while the peak widths increase appreciably above 150 bp using an LPA matrix. Upon elevating the temperature to 50 degrees C, the increase in viscosity of the N-alkoxyalkylacrylamide solutions is dependent upon their overall degree of hydrophobicity. The most hydrophobic polymers exhibit a lower critical solution temperature below 50 degrees C, undergoing a coil-to-globule transition followed by chain aggregation. DNA separation efficiency at 50 degrees C therefore decreases significantly with increasing hydrophobic character of the polymers, and no separations were possible with solutions with a lower critical solution temperature below 50 degrees C. The work reported here demonstrates the potential for this class of polymers to be used for applications such as PCR product and RFLP sizing, and provides insight into the effect of polymer hydrophobicity on DNA separations.


Assuntos
DNA/isolamento & purificação , Eletroforese em Microchip/métodos , Análise de Sequência de DNA/métodos , Resinas Acrílicas/química , DNA/genética , Humanos , Luz , Reologia , Espalhamento de Radiação , Temperatura , Viscosidade
11.
Electrophoresis ; 29(23): 4652-62, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053156

RESUMO

Electrophoresis-based DNA sequencing is the only proven technology for the de novo sequencing of large and complex genomes. Miniaturization of capillary array electrophoresis (CAE) instruments can increase sequencing throughput and decrease cost while maintaining the high quality and long read lengths that has made CAE so successful for de novo sequencing. The limited availability of high-performance polymer matrices and wall coatings designed specifically for microchip-sequencing platforms continues to be a major barrier to the successful development of a commercial microchip-sequencing instrument. It has been generally assumed that the matrices and wall coatings that have been developed for use in commercial CAE instruments will be able to be implemented directly into microchip devices with little to no change in sequencing performance. Here, we show that sequencing matrices developed specifically for microchip electrophoresis systems can deliver read lengths that are 150-300 bases longer on chip than some of the most widely used polymer-sequencing matrices available commercially. Additionally, we show that the coating ability of commercial matrices is much less effective in the borosilicate chips used in this study. These results lead to the conclusion that new materials must be developed to make high-performance microfabricated DNA-sequencing instruments a reality.


Assuntos
Eletroforese em Microchip/métodos , Análise de Sequência de DNA/métodos , Acrilamidas/química , Resinas Acrílicas/química , DNA/química , DNA/genética , Humanos , Peso Molecular , Polímeros/síntese química , Polímeros/química , Reologia , Viscosidade
12.
Anal Chem ; 79(20): 7740-7, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17874850

RESUMO

We have studied the effects of polymer molar mass and concentration on the electrophoretic migration modalities of individual molecules of DNA in LPA, HEC, and PEO solutions via epifluorescent videomicroscopy. While both transient entanglement coupling (TEC) and reptation have been studied in the past, the transition between them has not. Understanding this transition will allow for polymer network properties to be optimized to enhance the speed and resolution of DNA separations in microfluidic devices. Near the overlap threshold concentration, C*, TEC is the dominant observed mode of DNA migration, and the observation frequency of TEC increases with increasing polymer molar mass. As polymer concentration is increased, observed TEC events reduce to zero while DNA reptation events become the only detected mechanism. Individual DNA molecules undergoing both migration mechanisms were counted in solutions of varying polymer molar masses and concentrations and were plotted against a dimensionless polymer concentration, C/C*. The data for LPA reduce to form universal curves with a sharp increase in DNA reptation at approximately 6.5C*. Analogous transition concentrations for PEO and HEC were observed at 5C* and 3.5C*, respectively, reflecting the different physical properties of these polymers. This transition correlates closely with the polymer network entanglement concentration, Ce, as measured by rheological techniques. The electrophoretic mobility of lambda-DNA in LPA polymer solutions was also measured and shows how a balance can be struck between DNA resolution and separation speed by choosing the desired prevalence of DNA reptation.


Assuntos
DNA/análise , Eletroforese em Gel de Ágar/métodos , Microscopia de Vídeo/métodos , Polímeros/química , Técnicas de Diluição do Indicador , Probabilidade , Soluções , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa