Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484470

RESUMO

Herbs that are usually recognized as medicinal plants are well known for their therapeutic effects and are traditionally used to treat numerous diseases, including aging. This study aimed to evaluate the metabolite variations among six selected herbs namely Curcurma longa, Oenanthe javanica, Vitex negundo, Pluchea indica, Cosmos caudatus and Persicaria minus using proton nuclear magnetic resonance (1H-NMR) coupled with multivariate data analysis (MVDA). The free radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assay. The anti-aging property was characterized by anti-elastase and anti-collagenase inhibitory activities. The results revealed that P. minus showed the highest radical scavenging activities and anti-aging properties. The partial least squares (PLS) biplot indicated the presence of potent metabolites in P. minus such as quercetin, quercetin-3-O-rhamnoside (quercitrin), myricetin derivatives, catechin, isorhamnetin, astragalin and apigenin. It can be concluded that P. minus can be considered as a potential source for an anti-aging ingredient and also a good free radical eradicator. Therefore, P. minus could be used in future development in anti-aging researches and medicinal ingredient preparations.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Plantas Medicinais/química , Flavonoides/química , Análise Multivariada
2.
Mol Nutr Food Res ; 51(6): 714-25, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17533654

RESUMO

The fate of anthocyanins and ellagitannins in rats was monitored following ingestion of raspberry juice. After 1 h low nM concentrations of unmetabolised anthocyanins were present in plasma but these declined by 2 h and after 4 h they were no longer detectable. For the first 2 h there was an almost full recovery of anthocyanins as they passed from the stomach through the duodenum/jejunum and into the ileum. After 3 h less than 50% were recovered, and the levels declined rapidly thereafter. Excretion of raspberry anthocyanins in urine over a 24 h period was equivalent to 1.2% of the amount ingested. Trace quantities of anthocyanins were detected in the caecum, colon and faeces and they were absent in extracts of liver, kidneys and brain. Urine also contained a number of phenolic acids but most were present in quantities well in excess of the 918 nmol of anthocyanins present in the ingested juice. These findings indicate that raspberry anthocyanins per se are poorly absorbed, probably prior to reaching the ileum, and that substantial amounts pass from the small to the large intestine where they are degraded by colonic bacteria. Ellagitannins disappeared in the stomach without accumulation of ellagic acid.


Assuntos
Antocianinas/farmacocinética , Frutas/química , Taninos Hidrolisáveis/farmacocinética , Rosaceae/química , Animais , Antocianinas/sangue , Antocianinas/urina , Bebidas , Disponibilidade Biológica , Líquidos Corporais/química , Cromatografia Gasosa-Espectrometria de Massas , Trato Gastrointestinal/metabolismo , Cinética , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
3.
Artigo em Inglês | MEDLINE | ID: mdl-24368926

RESUMO

This study aimed to determine anthocyanins and their antioxidative and cardioprotective properties in defatted dabai parts. Anthocyanins in crude extracts and extract fractions of defatted dabai peel and pericarp were quantified using UHPLC, while their antioxidant capacity and oxidative stress inhibition ability were evaluated by using DPPH and CUPRAC assays as well as linoleic acid oxidation system, hemoglobin oxidation, and PARP-1 inhibition ELISA. Cardioprotective effect of the defatted dabai peel extract was evaluated using hypercholesterolemic-induced New Zealand white rabbits. Six anthocyanins were detected in the defatted dabai peel, with the highest antioxidant capacities and oxidative stress inhibition effect compared to the other part. The defatted dabai peel extract has also inhibited lipid peroxidation (plasma MDA) and elevated cellular antioxidant enzymes (SOD and GPx) in the tested animal model. Major anthocyanin (cyanidin-3-glucoside) and other anthocyanins (pelargonidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-galactoside, cyanidin-3-arabinoside, and peonidin-3-glucoside) detected in the defatted dabai peel are potential future nutraceuticals with promising medicinal properties.

4.
J Agric Food Chem ; 59(22): 12217-25, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21978223

RESUMO

HPLC with PDA and MS(2) detection was used to identify and quantify flavonoids in the tropical citrus species Citrus microcarpa , Citrus hystrix , Citrus medica var. 1 and 2, and Citrus suhuiensis . Most of these species contained high amounts of flavones, flavanones, and dihydrochalcone C- and/or O-glycosides, which were identified on the basis of HPLC retention times, cochromatography with available authentic standards, absorbance spectra, and mass spectral fragmentation patterns. Among the major compounds detected were apigenin-6,8-di-C-glucoside, apigenin-8-C-glucosyl-2″-O-rhamnoside, phloretin-3',5'-di-C-glucoside, diosmetin-7-O-rutinoside, hesperetin-7-O-neohesperidoside, and hesperetin-7-O-rutinoside. Most of the dihydrochalcone and flavone C-glycosides have not previously been detected in tropical citrus. C. microcarpa contained a high amount of phloretin-3',5'-di-C-glucoside. Most of the tropical citrus flavanones were neohesperidoside conjugates, which are responsible for imparting a bitter taste to the fruit. Only C. suhuiensis fruit contains rutinoside, a nonbitter conjugate.


Assuntos
Citrus/química , Flavonoides/química , Extratos Vegetais/química , Frutas/química , Estrutura Molecular , Clima Tropical
5.
J Agric Food Chem ; 58(2): 1296-304, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20041649

RESUMO

Following the ingestion of green tea, substantial quantities of flavan-3-ols pass from the small to the large intestine (Stalmach et al. Mol. Nutr. Food Res. 2009, 53, S44-S53; Mol. Nutr. Food Res. 2009, doi: 10.1002/mnfr.200900194). To investigate the fate of the flavan-3-ols entering the large intestine, where they are subjected to the action of the colonic microflora, (-)-epicatechin, (-)-epigallocatechin, and (-)-epigallocatechin-3-O-gallate were incubated in vitro with fecal slurries and the production of phenolic acid catabolites was determined by GC-MS. In addition, urinary excretion of phenolic catabolites was investigated over a 24 h period after ingestion of either green tea or water by healthy volunteers with a functioning colon. The green tea was also fed to ileostomists, and 0-24 h urinary excretion of phenolic acid catabolites was monitored. Pathways are proposed for the degradation of green tea flavan-3-ols in the colon and further catabolism of phenolic compounds passing into the circulatory system from the large intestine, prior to urinary excretion in quantities corresponding to ca. 40% of intake compared with ca. 8% absorption of flavan-3-ol methyl, glucuronide, and sulfate metabolites in the small intestine. The data obtained point to the importance of the colonic microflora in the overall bioavailability and potential bioactivity of dietary flavonoids.


Assuntos
Colo/metabolismo , Flavonoides/farmacocinética , Chá/química , Sistema Urinário/metabolismo , Adolescente , Adulto , Catequina/química , Catequina/metabolismo , Colo/química , Fezes/química , Fezes/microbiologia , Feminino , Flavonoides/química , Flavonoides/urina , Humanos , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo , Masculino , Chá/metabolismo , Sistema Urinário/química , Adulto Jovem
6.
Mol Nutr Food Res ; 53 Suppl 1: S68-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19415668

RESUMO

Human urine was collected over a 24 h period after the consumption of 250 mL of (i) water, (ii) orange juice, and (iii) orange juice plus 150 mL of full fat natural yoghurt. The orange juice contained 168 micromol of hesperetin-7-O-rutinoside and 18 micromol of naringenin-7-O-rutinoside. GC-MS analysis of the urine identified nine phenolic acids, five of which, 3-hydroxyphenylacetic acid, 3-hydroxyphenylhydracrylic acid, dihydroferulic acid, 3-methoxy-4-hydroxyphenylhydracrylic acid and 3-hydroxyhippuric acid, were associated with orange juice consumption indicating that they were derived from colonic catabolism of hesperetin-7-O-rutinoside. The overall 0-24 h excretion of the five phenolic acids was 6.7 +/- 1.8 micromol after drinking water and this increased significantly (p < 0.05) to 62 +/- 18 micromol, equivalent to 37% of the ingested flavanones, following orange juice consumption. When the orange juice was ingested with yoghurt excretion fell back markedly to 9.3 +/- 4.4 micromol. This was not due to a difference in mouth to caecum transit time, as measured with breath hydrogen production, though possibly there may have been a slowing of the bulk of the meal reaching the large intestine which may then have altered the catabolism of the flavanones to phenolic acids by the colonic microbiota.


Assuntos
Bebidas/análise , Citrus sinensis/química , Colo/microbiologia , Flavanonas/metabolismo , Iogurte , Adulto , Ácidos Carboxílicos/urina , Flavanonas/administração & dosagem , Flavanonas/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Hesperidina/análise , Hesperidina/metabolismo , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa