Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Virol J ; 21(1): 135, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858684

RESUMO

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Assuntos
Vírus Gigantes , Brasil , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase , Acanthamoeba castellanii/virologia , Acanthamoeba castellanii/isolamento & purificação , Microbiologia do Solo , Esgotos/virologia , Análise de Sequência de DNA , Água do Mar/virologia , Microbiologia da Água
2.
Extremophiles ; 28(2): 23, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575688

RESUMO

We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was Ascomycota, followed by Basidiomycota, Mortierellomycota, Chytridiomycota and Mucoromycota. Penicillium sp., Pseudogymnoascus pannorum, Coniochaeta sp., Aspergillus sp., Antarctomyces sp., Phenoliferia sp., Cryolevonia sp., Camptobasidiaceae sp., Rhodotorula mucilaginosa and Bannozyma yamatoana were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.


Assuntos
Micobioma , Neve , Regiões Antárticas , Fungos/genética , Temperatura Baixa , DNA Fúngico/genética
3.
J Basic Microbiol ; 64(7): e2300601, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386010

RESUMO

We assessed soil fungal and fungal-like diversity using metabarcoding in ornithogenically influenced soils around nests of the bird species Phalacrocorax atriceps, Macronectes giganteus, Pygoscelis antarcticus, and Pygoscelis adelie on the South Shetland Islands, maritime Antarctic. A total of 1,392,784 fungal DNA reads was obtained and assigned to 186 amplicon sequence variants (ASVs). The dominant fungal phylum was Ascomycota, followed by Basidiomycota, Chytridiomycota, Blastocladiomycota, Rozellomycota, Mortierellomycota, Monoblepharomycota, Aphelidiomycota, Basidiobolomycota, Mucoromycota, and the fungal-like Oomycota (Stramenopila), in rank order. Antarctomyces sp., Blastocladiomycota sp., Pseudogymnoascus pannorum, Microascaceae sp., Mortierella sp., Lobulomycetales sp., Sordariomycetes sp., Fungal sp., Rhizophydiales sp., Pseudeurotiaceae sp., Chytridiomycota sp. 1, Filobasidiella sp., Tausonia pullulans, Betamyces sp., and Leucosporidium sp. were the most abundant assigned taxa. The fungal assemblages present in the different ornithogenically influenced soils displayed different diversity indices. However, in general, we detected high fungal diversity and few taxa shared between the samples. Despite the polyextreme environmental conditions experienced in these Antarctic soils, the metabarcoding approach detected a rich and complex fungal community dominated by saprophytes, but with some pathogenic taxa also present. The community was dominated by psychrophilic and psychrotolerant taxa, some apparently endemic to Antarctica, and those identified only at higher taxonomic levels, which may represent currently undescribed fungi. The mycobiome detected included taxa characterized by different ecological roles, including saprotrophic, human- and animal-associated, phytopathogenic, mutualistic, and cosmopolitan. These fungi may potentially be dispersed by birds or in the air column over great distances, including between different regions within Antarctica and from South America, Africa, and Oceania.


Assuntos
Código de Barras de DNA Taxonômico , DNA Fúngico , Fungos , Microbiologia do Solo , Regiões Antárticas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Animais , DNA Fúngico/genética , Aves/microbiologia , Biodiversidade , Filogenia , Solo/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-36884373

RESUMO

Four isolates of Spathaspora species were recovered from rotting wood collected in two Brazilian Amazonian biomes. The isolates produced unconjugated allantoid asci with a single elongated ascospore with curved ends. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent two different novel Spathaspora species, phylogenetically related to Sp. boniae. Two isolates were obtained from rotting wood collected in two different sites of the Amazonian forest in the state of Pará. The name Spathaspora brunopereirae sp. nov. is proposed to accommodate these isolates. The holotype of Spathaspora brunopereirae sp. nov. is CBS 16119T (MycoBank MB846672). The other two isolates were obtained from a region of transition between the Amazonian forest and the Cerrado ecosystem in the state of Tocantins. The name Spathaspora domphillipsii sp. nov. is proposed for this novel species. The holotype of Spathaspora domphillipsii sp. nov. is CBS 14229T (MycoBank MB846697). Both species are able to convert d-xylose into ethanol and xylitol, a trait with biotechnological applications.


Assuntos
Saccharomycetales , Xilose , Ecossistema , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Saccharomycetales/genética , Leveduras/genética , Florestas , Madeira , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética
5.
Extremophiles ; 28(1): 3, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962679

RESUMO

Snow is a unique microhabitat, despite being a harsh environment, multiple life forms have adapted to survive in it. While algae, bacteria and fungi are dominant microorganisms in Antarctic snow, little is known about other organisms that may be present in this habitat. We used metabarcoding to investigate DNA sequence diversity of non-fungal eukaryotes present in snow obtained from six different sites across the Maritime Antarctica. A total of 20 taxa were assigned to obtained sequences, representing five Kingdoms (Chromista, Protozoa, Viridiplantae and Metazoa) and four phyla (Ciliophora, Cercozoa, Chlorophyta and Cnidaria). The highest diversity indices were detected in Trinity Peninsula followed by Robert Island, Arctowski Peninsula, Deception Island, King George Island and Snow Island. The most abundant assignments were to Trebouxiophyceae, followed by Chlamydomonas nivalis and Chlamidomonadales. No taxa were detected at all sites. Three potentially new records for Antarctica were detected: two Ciliophora (Aspidisca magna and Stokesia sp.) and the green algae Trebouxia potteri. Our data suggested that similarities found between the sites may be more related with snow physicochemical properties rather than geographic proximity or latitude. This study provides new insights into the diversity and distribution of eukaryotic organisms in Antarctic snow.


Assuntos
Chlamydomonas , Neve , Regiões Antárticas , Código de Barras de DNA Taxonômico , DNA
6.
An Acad Bras Cienc ; 94(suppl 1): e20201736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239797

RESUMO

Antarctica contains most of the glacial ice on the planet, a habitat that is largely unexplored by biologists. Recent warming in parts of Antarctica, particularly the Antarctic Peninsula region, is leading to widespread glacial retreat, releasing melt water and, potentially, contained biological material and propagules. In this study, we used a DNA metabarcoding approach to characterize Viridiplantae DNA present in Antarctic glacial ice. Ice samples from six glaciers in the South Shetland Islands and Antarctic Peninsula were analysed, detecting the presence of DNA representing a total of 16 taxa including 11 Chlorophyta (green algae) and five Magnoliophyta (flowering plants). The green algae may indicate the presence of a viable algal community in the ice or simply of preserved DNA, and the sequence diversity assigned included representatives of Chlorophyta not previously recorded in Antarctica. The presence of flowering plant DNA is most likely to be associated with pollen or tissue fragments introduced by humans.


Assuntos
Gelo , Viridiplantae , Regiões Antárticas , Ecossistema , Humanos
7.
An Acad Bras Cienc ; 94(suppl 1): e20210218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293945

RESUMO

We identified cultivable fungi present on the surface of five archaeological sealers' artifacts from the beginning of the 19th century collected on Livingston Island, Antarctica. Twenty fungal isolates were recovered and identified using biology molecular methods as taxa of Antarctomyces, Linnemannia, Penicillium, Mortierella, Talaromyces, and Trichoderma. Penicillium was dominant on artifacts stored at 10 and 25 °C. In contrast, Antarctomyces, Linnemania, Mortierella, and Trichoderma occurred only on artifacts stored between 8 °C and 10 °C. Our results showed that the Antarctic artifacts harboured cosmopolitan mesophilic, cold-tolerant, and endemic psychrophilic fungal taxa. The mesophilic fungi might have contaminated the artifacts in situ, during sampling, transport, and/or storage in the laboratory collection or represent dormant but viable form capable to grow on the objects. However, the detection of cold-tolerant and endemic fungi shows that these fungi, when stored between 8 ° and 10 °C, continue growing on the objects, which may supply them with organic nutrients; this may accelerate degradation of artifacts in the collection. Preventive steps should be adopted to avoid further microbial contamination. Sterilised microbiological conditions can be followed during fieldwork and transportation to Brazil. The preventive protocol may represent a better alternative to avoid artifact microbial proliferation to preserve rare Antarctic archaeological heritage.


Assuntos
Arqueologia , Ascomicetos , Regiões Antárticas , Brasil , Ilhas
8.
Extremophiles ; 25(1): 77-84, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33416982

RESUMO

We evaluated the fungal diversity in two lakes on the South Shetland Islands, using DNA metabarcoding through high-throughput sequencing (HTS). A microcosm experiment was deployed for two consecutive years in lakes on Deception and King George islands to capture potential decomposer freshwater fungi. Analyses of the baits revealed 258,326 DNA reads distributed in 34 fungal taxa of the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota and Rozellomycota. Tetracladium marchalianum, Tetracladium sp., Rozellomycota sp., Fungal sp. 1 and Fungal sp. 2 were the most common taxa detected. However, the majority of the communities comprised intermediate and rare taxa. Both fungal communities displayed moderate indices of diversity, richness and dominance. Only six taxa were detected in both lakes, including the most dominant T. marchalianum and Tetracladium sp. The high numbers of reads of the known aquatic saprotrophic hyphomycetes T. marchalianum and Tetracladium sp. in the baits suggest that these fungi may digest organic material in Antarctic lakes, releasing available carbon and nutrients to the other aquatic organisms present in the complex lake food web. Our data confirm that the use of cotton baits together with HTS approaches can be appropriate to study the diversity of resident freshwater fungi present in Antarctic lakes.


Assuntos
Código de Barras de DNA Taxonômico , Fungos/classificação , Lagos/microbiologia , Regiões Antárticas , Biodiversidade , DNA Fúngico/genética , Ilhas
9.
Extremophiles ; 25(4): 369-384, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117569

RESUMO

As part of the reconstruction of the Brazilian Antarctic Station on King George Island, three areas of moss carpet were transplanted to minimize the impact of the new facilities on the local biodiversity. A total of 650 m2 of moss carpet was transplanted to neighboring but previously uncolonized locations and has subsequently survived for the last 3 years. Antarctic moss carpets typically comprise low moss species diversity and are often monospecific. We investigated the cryptic biodiversity that was transplanted along with the carpets using a metabarcoding approach through high throughput sequencing. We targeted 16S rRNA for Bacteria and Archaea, ITS for Fungi and Viridiplantae and Cox1 for Metazoa. We detected DNA representing 263 taxa from five Kingdoms (Chromista, Fungi, Metazoa, Protista and Viridiplantae), two Domains (Archaea and Bacteria) and 33 Phyla associated with the carpet. This diversity included one Archaea, 189 Bacteria, 24 Chromista, 19 Fungi, eight Metazoa, seven Protista and 16 Viridiplantae. Bacteria was the most abundant, rich and diverse group, with Chromista second in diversity and richness. Metazoa was less diverse but second highest in dominance. This is the first study to attempt transplanting a significant area of moss carpet to minimize anthropogenic environmental damage in Antarctica and to use metabarcoding as a proxy to assess diversity associated with Antarctic moss carpets, further highlighting the importance of such habitats for other organisms and their importance for conservation.


Assuntos
Briófitas , Pisos e Cobertura de Pisos , Regiões Antárticas , Biodiversidade , RNA Ribossômico 16S
10.
Extremophiles ; 24(2): 219-225, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31732815

RESUMO

We surveyed the diversity of cultivable fungi isolated from cold and hot volcanic soils of Deception Island, Antarctica. Seventy-four fungal isolates were identified; these belonged to 17 taxa in the genera Aspergillus, Penicillium, Pseudogymnoascus, Purpureocillium, and Mortierella. The fungal assemblages showed low diversity, richness, and dominance indices. The Aspergillus taxa were dominant in the soils at 0 °C, 50 °C, and 100 °C. Aspergillus lacticoffeatus, Aspergillus cf. ruber, Penicillium citrinun, and Purpureocillium sodanum were present only in soils having a temperature of 100 °C. Aspergillus calidoustus was present in all thermal soils and displayed the highest densities. The majority of fungi displayed mesophilic behavior; however, different isolates of Aspergillus lacticoffeatus and Aspergillus niger were able to grow at 50 °C; these are phylogenetically close to the causative agents of aspergillosis in immunocompromised individuals. Deception Island perhaps represents one of the most visited regions in Antarctica and the tourism there has increased over the last 20 years, especially by elderly tourists, probably with weak immune systems, come in contact with the resident microorganisms, including the thermo-resistant opportunistic Aspergillus species.


Assuntos
Solo , Idoso , Regiões Antárticas , Ascomicetos , Fungos , Humanos , Ilhas , Microbiologia do Solo
11.
Extremophiles ; 24(4): 637-655, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32533308

RESUMO

In this study, we accessed culturable fungal assemblages present in the sediments of three lakes potentially impacted anthropogenically in the Fildes Peninsula, King George Island, Antarctica and identified 63 taxa. Cladosporium sp. 2, Pseudeurotium hygrophilum, and Pseudogymnoascus verrucosus were recovered from the sampled sediments of all lakes. High concentrations of metals and the lowest fungal diversity indices were detected in the sediments of the Central Lake, which can be influenced by human activities due to their proximity to research stations to those of the other two lakes, which were far from the Antarctic stations. At least one type of biological activity was demonstrated by 40 fungal extracts. Among these, P. hygrophilum, P. verrucosus, Penicillium glabrum, and Penicillium solitum demonstrated strong trypanocidal, herbicidal, and antifungal activities. Our results suggest that an increase of the anthropogenic activities in the region might have affected the microbial diversity and composition. In addition, the fungal diversity in these lakes may be a useful model to study the effect of anthropogenic activities in Antarctica. We isolated a diverse group of fungal taxa from Antarctic lake sediments, which have the potential to produce novel compounds for the both the medical and agriculture sectors.


Assuntos
Bioprospecção , Regiões Antárticas , Ascomicetos , Sedimentos Geológicos , Humanos , Ilhas , Lagos
12.
Extremophiles ; 24(2): 227-238, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31758267

RESUMO

We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.


Assuntos
Ascomicetos , Bioprospecção , Regiões Antárticas , Antifúngicos , Fungos , Penicillium
13.
Molecules ; 26(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374444

RESUMO

The metabolic pathways in the apicoplast organelle of Plasmodium parasites are similar to those in plastids in plant cells and are suitable targets for malaria drug discovery. Some phytotoxins released by plant pathogenic fungi have been known to target metabolic pathways of the plastid; thus, they may also serve as potential antimalarial drug leads. An EtOAc extract of the broth of the endophyte Botryosphaeria dothidea isolated from a seed collected from a Torreya taxifolia plant with disease symptoms, showed in vitro antimalarial and phytotoxic activities. Bioactivity-guided fractionation of the extract afforded a mixture of two known isomeric phytotoxins, FRT-A and flavipucine (or their enantiomers, sapinopyridione and (-)-flavipucine), and two new unstable γ-lactam alkaloids dothilactaenes A and B. The isomeric mixture of phytotoxins displayed strong phytotoxicity against both a dicot and a monocot and moderate cytotoxicity against a panel of cell lines. Dothilactaene A showed no activity. Dothilactaene B was isolated from the active fraction, which showed moderate in vitro antiplasmodial activity with high selectivity index. In spite of this activity, its instability and various other biological activities shown by related compounds would preclude it from being a viable antimalarial lead.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Ascomicetos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Antimaláricos/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Plasmodium/efeitos dos fármacos , Sementes/química , Análise Espectral , Taxaceae/microbiologia , Toxinas Biológicas/isolamento & purificação
14.
Extremophiles ; 23(3): 327-336, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852677

RESUMO

We studied the molecular taxonomy and diversity of cultivable rock fungi from Antarctic islands. From 50 rock samples, 386 fungal isolates were obtained and identified as 33 taxa of 20 genera. The genera Cladophialophora, Cladosporium, Cyphellophora, Eichleriella, Paracladophialophora, and Penicillium displayed the highest densities. Ecological diversity indices showed that the fungal assemblages are diverse and rich with low dominance. The genera Cladophialophora, Cladosporium, and Penicillium showed a broad distribution from rocks of the various islands. One hundred and fifty-nine fungi, grown at 37 °C, were identified as Penicillium chrysogenum, Fusarium sp., and Rhodotorula mucilaginosa. One hundred and three fungi displayed haemolytic activity, 81 produced proteinase, 9 produced phospholipase, and 25 presented dimorphism and a spore diameter ≤ 4 µm. The Antarctic Peninsula region appears to be under the effects of global climate changes, which may expose and accelerate the rock's weathering processes, and expose and release cryptic fungi and other microbes, especially those with innate pathogenic potential, previously arrested in rocks. Consequently, these rocks and their particles may represent a vehicle for the dispersal of microbial propagules, including those able to spread pathogens, along, across, and out of Antarctica.


Assuntos
Biodiversidade , Fungos , Filogenia , Microbiologia do Solo , Regiões Antárticas , Mudança Climática , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo
15.
Antonie Van Leeuwenhoek ; 112(3): 479-490, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302647

RESUMO

An iridescent yellow pigmented bacterium isolated from the Antarctic continent, named Cellulophaga fucicola strain 416, was found to be able to tolerate UV-B radiation. Its crude pigment extract was tested for antioxidant capacity, UV light stability and phototoxicity profile against murine fibroblast lines. The pigments were further isolated and chemically identified by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detectors. The results showed that the pigment extract presented weak stability under exposure to UV light, a phototoxic profile in the 3t3 Neutral Red Uptake test and a very high antioxidant activity, suggesting that it could be used as food and feed colourants. Zeaxanthin and two isomers of zeaxanthin, ß-cryptoxanthin and ß-carotene, were identified using a C18 column. These five carotenoids were the major pigments isolated from C. fucicola 416. In conclusion, the identification of pigments produced by the bacterial strain under study may help us understand how bacteria thrive in high UV and cold environments, and opens avenues for further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.


Assuntos
Antioxidantes/análise , Carotenoides/análise , Flavobacteriaceae/química , Flavobacteriaceae/isolamento & purificação , Pigmentos Biológicos/análise , Animais , Regiões Antárticas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Carotenoides/química , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavobacteriaceae/efeitos da radiação , Espectrometria de Massas , Camundongos , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/farmacologia , Raios Ultravioleta
16.
Int J Syst Evol Microbiol ; 68(7): 2306-2312, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29786499

RESUMO

Two isolates representing a new species of Scheffersomyces were isolated from rotting wood samples collected in an Amazonian forest ecosystem in Brazil. Analysis of the sequences of the D1/D2 domains showed that this new species is phylogenetically related to Scheffersomyces NYMU 15730, a species without a formal description, and the two are in an early emerging position with respect to the xylose-fermenting subclade containing Scheffersomyces titanus and Scheffersomyces stipitis. Phylogenomic analyses using 474 orthologous genes placed the new species in an intermediary position between Scheffersomyces species and the larger genus Spathaspora and the Candida albicans/Lodderomyces clade. The novel species, Scheffersomyces stambukii f.a., sp. nov., is proposed to accommodate these isolates. The type strain of Scheffersomyces stambukii sp. nov. is UFMG-CM-Y427T (=CBS 14217T). The MycoBank number is MB 824093. In addition, we studied the xylose metabolism of this new species.


Assuntos
Filogenia , Saccharomycetales/classificação , Madeira/microbiologia , Xilose/metabolismo , Brasil , DNA Fúngico/genética , Fermentação , Florestas , Técnicas de Tipagem Micológica , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
17.
Extremophiles ; 22(3): 381-393, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29332141

RESUMO

Molecular biology techniques were used to identify 218 fungi from soil samples collected from four islands of Antarctica. These consisted of 22 taxa of 15 different genera belonging to the Zygomycota, Ascomycota, and Basidiomycota. Mortierella, Antarctomyces, Pseudogymnoascus, and Penicillium were the most frequently isolated genera and Penicillium tardochrysogenum, Penicillium verrucosus, Goffeauzyma gilvescens, and Mortierella sp. 2 the most abundant taxa. All fungal isolates were cultivated using solid-state fermentation to obtain their crude extracts. Pseudogymnoascus destructans, Mortierella parvispora, and Penicillium chrysogenum displayed antiparasitic activities, whilst extracts of P. destructans, Mortierella amoeboidea, Mortierella sp. 3, and P. tardochrysogenum showed herbicidal activities. Reported as pathogenic for bats, different isolates of P. destructans exhibited trypanocidal activities and herbicidal activity, and may be a source of bioactive molecules to be considered for chemotherapy against neglected tropical diseases. The abundant presence of P. destructans in soils of the four islands gives evidence supporting that soils in the Antarctic Peninsula constitute a natural source of strains of this genus, including some P. destructans strains that are phylogenetically close to those that infect bats in North America and Europe/Palearctic Asia.


Assuntos
Antiprotozoários/farmacologia , Fungos/genética , Herbicidas/farmacologia , Microbiota , Filogenia , Microbiologia do Solo , Allium/efeitos dos fármacos , Regiões Antárticas , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Lactuca/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Zika virus/efeitos dos fármacos
18.
Antonie Van Leeuwenhoek ; 111(8): 1345-1360, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29516313

RESUMO

Fungi are generally easily dispersed, able to colonise a wide variety of substrata and can tolerate diverse environmental conditions. However, despite these abilities, the diversity of fungi in the Atacama Desert is practically unknown. Most of the resident fungi in desert regions are ubiquitous. Some of them, however, seem to display specific adaptations that enable them to survive under the variety of extreme conditions of these regions, such as high temperature, low availability of water, osmotic stress, desiccation, low availability of nutrients, and exposure to high levels of UV radiation. For these reasons, fungal communities living in the Atacama Desert represent an unknown part of global fungal diversity and, consequently, may be source of new species that could be potential sources for new biotechnological products. In this review, we focus on the current knowledge of the diversity, ecology, adaptive strategies, and biotechnological potential of the fungi reported in the different ecosystems of the Atacama Desert.


Assuntos
Biodiversidade , Clima Desértico , Fungos/classificação , Microbiologia do Solo , Adaptação Fisiológica , Chile , Ecologia , Ecossistema , Fungos/isolamento & purificação , Fungos/metabolismo , Modelos Biológicos
19.
Z Naturforsch C J Biosci ; 73(11-12): 449-455, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30179857

RESUMO

The endophytic fungus Mycosphaerella sp. (UFMGCB2032) was isolated from the healthy leaves of Eugenia bimarginata, a plant from the Brazilian savanna. Two novel usnic acid derivatives, mycousfuranine (1) and mycousnicdiol (2), were isolated from the ethyl acetate extract, and their structure was elucidated by NMR and MS analyses. Compounds 1 and 2 exhibited moderate antifungal activities against Cryptococcus neoformans and Cryptococcus gattii, each with minimum inhibitory concentration values of 50.0 µg/mL and 250.0 µg/mL, respectively.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/química , Benzofuranos/farmacologia , Antifúngicos/análise , Ascomicetos/patogenicidade , Benzofuranos/análise , Cryptococcus/efeitos dos fármacos , Eugenia/microbiologia
20.
Int J Syst Evol Microbiol ; 67(11): 4332-4339, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945529

RESUMO

During a survey of carotenogenic yeasts from cold and oligotrophic environments in Patagonia, several yeasts of the genus Dioszegia (Tremellales, Agaricomycotina) were detected, including three strains that could not be assigned to any known taxa. Analyses of internal transcribed spacer and D1/D2 regions of the large subunit rRNA gene showed these strains are conspecific with several other strains found in the Italian Alps and in Antarctica soil. Phylogenetic analyses showed that 19 of these strains represent a novel yeast species of the genus Dioszegia. The name Dioszegia patagonica sp. nov. is proposed to accommodate these strains and CRUB 1147T (UFMG 195T=CBMAI 1564T=DBVPG 10618T=CBS 14901T; MycoBank MB 819782) was designated as the type strain. This Dioszegia species accumulates biotechnologically valuable compounds such as carotenoid pigments and mycosporines.


Assuntos
Basidiomycota/classificação , Lagos/microbiologia , Filogenia , Argentina , Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Pigmentação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa