RESUMO
Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.
Assuntos
Rejeição de Enxerto , Transplante de Rim , Macaca fascicularis , Suínos , Transplante Heterólogo , Animais , Humanos , Animais Geneticamente Modificados , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/métodos , Polissacarídeos/deficiência , Suínos/genética , Transplante Heterólogo/métodos , Transgenes/genéticaRESUMO
Imaging tools for kidney inflammation could improve care for patients suffering inflammatory kidney diseases by lessening reliance on percutaneous biopsy or biochemical tests alone. During kidney inflammation, infiltration of myeloid immune cells generates a kidney microenvironment that is oxidizing relative to normal kidney. Here, we evaluated whether magnetic resonance imaging (MRI) using the redox-active iron (Fe) complex Fe-PyC3A as an oxidatively activated probe could serve as a marker of kidney inflammation using mouse models of unilateral ischemia-reperfusion injury (IRI) and lupus nephritis (MRL-lpr mice). We imaged unilateral IRI in gp91phox knockout mice, which are deficient in the nicotinamide oxidase II (NOX2) enzyme required for myeloid oxidative burst, as loss of function control, and imaged MRL/MpJ mice as non-kidney involved lupus control. Gadoterate meglumine was used as a non-oxidatively activated control MRI probe. Fe-PyC3A safety was preliminarily examined following a single acute dose. Fe-PyC3A generated significantly greater MRI signal enhancement in the IRI kidney compared to the contralateral kidney in wild-type mice, but the effect was not observed in the NOX2-deficient control. Fe-PyC3A also generated significantly greater kidney enhancement in MRL-lpr mice compared to MRL/MpJ control. Gadoterate meglumine did not differentially enhance the IRI kidney over the contralateral kidney and did not differentially enhance the kidneys of MRL-lpr over MRL/MpJ mice. Fe-PyC3A was well tolerated at the highest dose evaluated, which was a 40-fold greater than required for imaging. Thus, our data indicate that MRI using Fe-PyC3A is specific to an oxidizing kidney environment shaped by activity of myeloid immune cells and support further evaluation of Fe-PyC3A for imaging kidney inflammation.
Assuntos
Modelos Animais de Doenças , Rim , Nefrite Lúpica , Imageamento por Ressonância Magnética , Camundongos Knockout , NADPH Oxidase 2 , Oxirredução , Traumatismo por Reperfusão , Animais , Imageamento por Ressonância Magnética/métodos , Rim/diagnóstico por imagem , Rim/patologia , Rim/imunologia , Rim/metabolismo , Nefrite Lúpica/diagnóstico por imagem , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Camundongos Endogâmicos MRL lpr , Camundongos , Meios de Contraste/administração & dosagem , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Feminino , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genéticaRESUMO
Kidney transplant (KTx) biopsies showing transplant glomerulopathy (TG) (glomerular basement membrane double contours (cg) > 0) and microvascular inflammation (MVI) in the absence of C4d staining and donor-specific antibodies (DSAs) do not fulfill the criteria for chronic active antibody-mediated rejection (CA-AMR) diagnosis and do not fit into any other Banff category. To investigate this, we initiated a multicenter intercontinental study encompassing 36 cases, comparing the immunomic and transcriptomic profiles of 14 KTx biopsies classified as cg+MVI DSA-/C4d- with 22 classified as CA-AMR DSA+/C4d+ through novel transcriptomic analysis using the NanoString Banff-Human Organ Transplant (B-HOT) panel and subsequent orthogonal subset analysis using two innovative 5-marker multiplex immunofluorescent panels. Nineteen genes were differentially expressed between the two study groups. Samples diagnosed with CA-AMR DSA+/C4d+ showed a higher glomerular abundance of natural killer cells and higher transcriptomic cell type scores for macrophages in an environment characterized by increased expression of complement-related genes (i.e., C5AR1) and higher activity of angiogenesis, interstitial fibrosis tubular atrophy, CA-AMR, and DSA-related pathways when compared to samples diagnosed with cg+MVI DSA-/C4d-. Samples diagnosed with cg+MVI DSA-/C4d- displayed a higher glomerular abundance and activity of T cells (CD3+, CD3+CD8+, and CD3+CD8-). Thus, we show that using novel multiomic techniques, KTx biopsies with cg+MVI DSA-/C4d- have a prominent T-cell presence and activity, putting forward the possibility that these represent a more T-cell dominant phenotype.
Assuntos
Nefropatias , Transplante de Rim , Humanos , Multiômica , Isoanticorpos , Linfócitos T , Transplante de Rim/efeitos adversos , Inflamação , Biópsia , Rejeição de Enxerto , Fragmentos de Peptídeos , Complemento C4bRESUMO
De novo membranous nephropathy (dnMN) is an uncommon immune complex-mediated late complication of human kidney allografts that causes proteinuria. We report here the first case of dnMN in a pig-to-baboon kidney xenograft. The donor was a double knockout (GGTA1 and ß4GalNT1) genetically engineered pig with a knockout of the growth hormone receptor and addition of 6 human transgenes (hCD46, hCD55, hTBM, hEPCR, hHO1, and hCD47). The recipient developed proteinuria at 42 days posttransplant, which progressively rose to the nephrotic-range at 106 days, associated with an increase in serum antidonor IgG. Kidney biopsies showed antibody-mediated rejection (AMR) with C4d and thrombotic microangiopathy that eventually led to graft failure at 120 days. In addition to AMR, the xenograft had diffuse, global granular deposition of C4d and IgG along the glomerular basement membrane on days 111 and 120. Electron microscopy showed extensive amorphous subepithelial electron-dense deposits with intervening spikes along the glomerular basement membrane. These findings, in analogy to human renal allografts, are interpreted as dnMN in the xenograft superimposed on AMR. The target was not identified but is hypothesized to be a pig xenoantigen expressed on podocytes. Whether dnMN will be a significant problem in other longer-term xenokidneys remains to be determined.
Assuntos
Glomerulonefrite Membranosa , Nefropatias , Transplante de Rim , Humanos , Suínos , Animais , Glomerulonefrite Membranosa/etiologia , Transplante de Rim/efeitos adversos , Xenoenxertos , Rim/patologia , Nefropatias/patologia , Proteinúria/etiologia , Imunoglobulina G , Rejeição de Enxerto/patologiaRESUMO
As more data become available, the Banff 2007 working classification of skin-containing vascularized composite allograft (VCA) pathology is expected to evolve and develop. This report represents the Banff VCA Working Group's consensus on the first revision of the 2007 scoring system. Prior to the 2022 Banff-CanXadian Society of Transplantation Joint Meeting, 83 clinicians and/or researchers were invited to a virtual meeting to discuss whether the 2007 Banff VCA system called for a revision. Unanimously, it was determined that the vascular changes were to be included in the first revision. Subsequently, 2 international online surveys, each followed by virtual discussions, were launched. The goals were (1) to identify which changes define severe rejection, (2) to grade their importance in the evaluation of severe rejection, and (3) to identify emerging criteria to diagnose rejection. A final hybrid (in-person and virtual) discussion at the Banff/Canadian Society of Transplantation Joint Meeting finalized the terminology, the definition, a scoring system, and a reporting system of the vascular changes. This proposal represents an international consensus on this topic and establishes the first revision of the Banff 2007 working classification of skin-containing vascularized composite allograft pathology.
Assuntos
Rejeição de Enxerto , Alotransplante de Tecidos Compostos Vascularizados , Humanos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/etiologiaRESUMO
The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell-mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.
Assuntos
Transplante de Rim , Canadá , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Rim/patologia , AloenxertosRESUMO
Antibody-mediated rejection (AMR) is a common cause of graft failure after pig-to-nonhuman primate organ transplantation, even when the graft is from a pig with multiple genetic modifications. The specific factors that initiate AMR are often uncertain. We report two cases of pig kidney transplantation into immunosuppressed baboons in which we identify novel factors associated with the initiation of AMR. In the first, membranous nephropathy was the initiating factor that was then associated with the apparent loss of the therapeutic anti-CD154 monoclonal antibody in the urine when severe proteinuria was present. This observation suggests that proteinuria may be associated with the loss of any therapeutic monoclonal antibody, for example, anti-CD154 or eculizumab, in the urine, resulting in xenograft rejection. In the second case, the sequence of events and histopathology tentatively suggested that pyelonephritis may have initiated acute-onset AMR. The association of a urinary infection with graft rejection has been well-documented in ABO-incompatible kidney allotransplantation based on the expression of an antigen on the invading microorganism shared with the kidney graft, generating an immune response to the graft. To our knowledge, these potential initiating factors of AMR in pig xenografts have not been highlighted previously.
Assuntos
Rejeição de Enxerto , Xenoenxertos , Imunossupressores , Transplante de Rim , Papio , Transplante Heterólogo , Animais , Feminino , Masculino , Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Terapia de Imunossupressão/métodos , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Suínos , Transplante Heterólogo/métodos , Transplante Heterólogo/efeitos adversosRESUMO
The current gold standard for preserving vascularized composite allografts (VCA) is 4°C static cold storage (SCS), albeit muscle vulnerability to ischemia can be described as early as after 2 h of SCS. Alternatively, machine perfusion (MP) is growing in the world of organ preservation. Herein, we investigated the outcomes of oxygenated acellular subnormothermic machine perfusion (SNMP) for 24-h VCA preservation before allotransplantation in a swine model. Six partial hindlimbs were procured on adult pigs and preserved ex vivo for 24 h with either SNMP (n = 3) or SCS (n = 3) before heterotopic allotransplantation. Recipient animals received immunosuppression and were followed up for 14 days. Clinical monitoring was carried out twice daily, and graft biopsies and blood samples were regularly collected. Two blinded pathologists assessed skin and muscle samples. Overall survival was higher in the SNMP group. Early euthanasia of 2 animals in the SCS group was linked to significant graft degeneration. Analyses of the grafts showed massive muscle degeneration in the SCS group and a normal aspect in the SNMP group 2 weeks after allotransplantation. Therefore, this 24-h SNMP protocol using a modified Steen solution generated better clinical and histological outcomes in allotransplantation when compared to time-matched SCS.
Assuntos
Sobrevivência de Enxerto , Preservação de Órgãos , Perfusão , Alotransplante de Tecidos Compostos Vascularizados , Animais , Preservação de Órgãos/métodos , Perfusão/métodos , Suínos , Alotransplante de Tecidos Compostos Vascularizados/métodos , Membro Posterior , Aloenxertos Compostos , Modelos Animais , Transplante Homólogo , AloenxertosRESUMO
BACKGROUND: In most CKDs, lysyl oxidase oxidation of collagen forms allysine side chains, which then form stable crosslinks. We hypothesized that MRI with the allysine-targeted probe Gd-oxyamine (OA) could be used to measure this process and noninvasively detect renal fibrosis. METHODS: Two mouse models were used: hereditary nephritis in Col4a3-deficient mice (Alport model) and a glomerulonephritis model, nephrotoxic nephritis (NTN). MRI measured the difference in kidney relaxation rate, ΔR1, after intravenous Gd-OA administration. Renal tissue was collected for biochemical and histological analysis. RESULTS: ΔR1 was increased in the renal cortex of NTN mice and in both the cortex and the medulla of Alport mice. Ex vivo tissue analyses showed increased collagen and Gd-OA levels in fibrotic renal tissues and a high correlation between tissue collagen and ΔR1. CONCLUSIONS: Magnetic resonance imaging using Gd-OA is potentially a valuable tool for detecting and staging renal fibrogenesis.
Assuntos
Rim , Nefrite Hereditária , Camundongos , Animais , Rim/diagnóstico por imagem , Rim/patologia , Nefrite Hereditária/patologia , Fibrose , Imageamento por Ressonância Magnética/métodos , Modelos Animais de DoençasRESUMO
Two accepted possible pathways for Merkel cell carcinoma (MCC) pathogenesis include the clonal integration of the Merkel cell polyomavirus (MCPyV) into the neoplastic cells and by UV irradiation. We hypothesize that, in UV etiology, the expression of genes associated with epithelial-mesenchymal transition (EMT) would be higher in MCPyV-negative MCCs. We compared RNA expression in 16 MCPyV-negative with that in 14 MCPyV-positive MCCs in 30 patients using NanoString panel of 760 gene targets as an exploratory method. Subsequently, we confirmed the findings with a publicly available RNA sequencing data set. The NanoString method showed that 29 of 760 genes exhibited significant deregulation. Ten genes (CD44, COL6A3, COL11A1, CXCL8, INHBA, MMP1, NID2, SPP1, THBS1, and THY1) were part of the EMT pathway. The expression of CDH1/E-cadherin, a key EMT gene, and TWIST1, regulator gene of EMT, was higher in MCPyV-negative tumors. To further investigate the expression of EMT genes in MCPyV-negative MCCs, we analyzed publicly available RNA sequencing data of 111 primary MCCs. Differential expression and gene set enrichment analysis of 35 MCPyV-negative versus 76 MCPyV-positive MCCs demonstrated significantly higher expression of EMT-related genes and associated pathways such as Notch signaling, TGF-ß signaling, and Hedgehog signaling, and UV response pathway in MCPyV-negative MCCs. The significance of the EMT pathway in MCPyV-negative MCCs was confirmed independently by a coexpression module analysis. One of the modules (M3) was specifically activated in MCPyV-negative MCCs and showed significant enrichment for genes involved in EMT. A network analysis of module M3 revealed that CDH1/E-cadherin was among the most connected genes (hubs). E-cadherin and LEF1 immunostains demonstrated significantly more frequent expression in MCPvV-negative versus MCPyV-positive tumors (P < .0001). In summary, our study showed that the expression of EMT-associated genes is higher in MCPyV-negative MCC. Because EMT-related proteins can be targeted, the identification of EMT pathways in MCPyV-negative MCCs is of potential therapeutic relevance.
Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Neoplasias Cutâneas/metabolismo , Poliomavírus das Células de Merkel/genética , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/genética , Infecções por Polyomavirus/complicações , Infecções por Polyomavirus/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Hedgehog , CaderinasRESUMO
Regulatory T cells (Tregs) can inhibit cellular immunity in diverse experimental models and have entered early phase clinical trials in autoimmunity and transplantation to assess safety and efficacy. As part of the ONE Study consortium, we conducted a phase I-II clinical trial in which purified donor antigen reactive (dar)-Tregs (CD4+CD25+CD127lo) were administered to 3 patients, 7 to 11 days after live donor renal transplant. Recipients received a modified immunosuppression regimen, without induction therapy, consisting of maintenance tacrolimus, mycophenolate mofetil, and steroids. Steroids were weaned off over 14 weeks. No rejection was seen on any protocol biopsy. Therefore, all patients discontinued mycophenolate mofetil 11 to 13 months posttransplant, per protocol. An early for-cause biopsy in 1 patient, 5 days after dar-Treg infusion, revealed absence of rejection and accumulation of Tregs in the kidney allograft. All patients had Treg-containing lymphoid aggregates evident on protocol biopsies performed 8 months posttransplant. The patients are now all >6 years posttransplant on tacrolimus monotherapy with excellent graft function. None experienced rejection episodes. No serious adverse events were attributable to Treg administration. These results support a favorable safety profile of dar-Tregs administered early after renal transplant, suggest early biopsy might be an instructive research endpoint and provide preliminary evidence of potential immunomodulatory activity.
Assuntos
Imunossupressores , Tacrolimo , Humanos , Imunossupressores/farmacologia , Tacrolimo/uso terapêutico , Ácido Micofenólico/uso terapêutico , Doadores Vivos , Linfócitos T Reguladores , Projetos Piloto , Rim , Esteroides , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/tratamento farmacológicoRESUMO
Blockade of the CD40/CD154 T cell costimulation pathway is a promising approach to supplement or replace current clinical immunosuppression in solid organ transplantation. We evaluated the tolerability and activity of a novel humanized anti-CD154 monoclonal antibody, TNX-1500 (TNX), in a nonhuman primate heterotopic cardiac allogeneic (allo) transplant model. TNX-1500 contains a rupluzimab fragment antigen-binding region and an immunoglobin G4 crystallizable fragment region engineered to reduce binding to the crystallizable fragment gamma receptor IIa and associated risks of thrombosis. Recipients were treated for 6 months with standard-dose TNX (sTNX) monotherapy, low-dose TNX monotherapy (loTNX), or loTNX with mycophenolate mofetil (MMF) (loTNX + MMF). Results were compared with historical data using chimeric humanized 5c8 monotherapy dosed as for loTNX but discontinued at 3 months. Median survival time was similar for humanized 5c8 and both loTNX groups, but significantly longer with sTNX (>265 days) than with loTNX (99 days) or loTNX + MMF (88 days) (P < 0.05 for both comparisons against sTNX). Standard-dose TNX prevented antidonor alloantibody elaboration, inhibited chronic rejection, and was associated with a significantly reduced effector T cells/regulatory T cells ratio relative to loTNX with MMF. No thrombotic complications were observed. This study demonstrated that TNX was well tolerated, prolongs allograft survival, and prevents alloantibody production and cardiac allograft vasculopathy in a stringent preclinical nonhuman primate heart allotransplant model.
Assuntos
Anticorpos Monoclonais , Rejeição de Enxerto , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Ligante de CD40 , Anticorpos Monoclonais Humanizados , Isoanticorpos , Aloenxertos , Primatas , Sobrevivência de EnxertoRESUMO
The blockade of the CD154-CD40 pathway with anti-CD154 monoclonal antibody has been a promising immunomodulatory approach to prevent allograft rejection. However, clinical trials of immunoglobulin G1 antibodies targeting this pathway revealed thrombogenic properties, which were subsequently shown to be mediated by crystallizable fragment (Fc)-gamma receptor IIa-dependent platelet activation. To prevent thromboembolic complications, an immunoglobulin G4 anti-CD154 monoclonal antibody, TNX-1500, which retains the fragment antigen binding region of ruplizumab (humanized 5c8, BG9588), was modified by protein engineering to decrease Fc binding to Fc-gamma receptor IIa while retaining certain other effector functions and pharmacokinetics comparable with natural antibodies. Here, we report that TNX-1500 treatment is not associated with platelet activation in vitro and consistently inhibits kidney allograft rejection in vivo without clinical or histologic evidence of prothrombotic phenomena. We conclude that TNX-1500 retains efficacy similar to that of 5c8 to prevent kidney allograft rejection while avoiding previously identified pathway-associated thromboembolic complications.
Assuntos
Transplante de Rim , Animais , Transplante de Rim/efeitos adversos , Ligante de CD40 , Rim , Anticorpos Monoclonais/uso terapêutico , Antígenos CD40 , Imunoglobulina G , Primatas , Aloenxertos , Sobrevivência de Enxerto , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controleRESUMO
Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.
Assuntos
Linfócitos B Reguladores , Camundongos , Animais , Transcriptoma , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Rim , Aloenxertos , Diferenciação Celular , Rejeição de Enxerto/etiologia , Sobrevivência de EnxertoRESUMO
Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.
Assuntos
Meios de Contraste , Compostos Organometálicos , Ratos , Humanos , Animais , Gadolínio/farmacocinética , Distribuição Tecidual , Estudos Prospectivos , Encéfalo , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodosRESUMO
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Assuntos
Anticorpos , Rejeição de Enxerto , Humanos , Animais , Suínos , Transplante Heterólogo , Rejeição de Enxerto/prevenção & controle , Transplante Homólogo , Proteínas do Sistema Complemento , Anti-InflamatóriosRESUMO
INTRODUCTION: Expression of human complement pathway regulatory proteins (hCPRP's) such as CD46 or CD55 has been associated with improved survival of pig organ xenografts in multiple different models. Here we evaluate the hypothesis that an increased human CD46 gene dose, through homozygosity or additional expression of a second hCPRP, is associated with increased protein expression and with improved protection from injury when GTKO lung xenografts are perfused with human blood. METHODS: Twenty three GTKO lungs heterozygous for human CD46 (GTKO.heteroCD46), 10 lungs homozygous for hCD46 (GTKO.homoCD46), and six GTKO.homoCD46 lungs also heterozygous for hCD55 (GTKO.homoCD46.hCD55) were perfused with human blood for up to 4 h in an ex vivo circuit. RESULTS: Relative to GTKO.heteroCD46 (152 min, range 5-240; 6/23 surviving at 4 h), survival was significantly improved for GTKO.homoCD46 (>240 min, range 45-240, p = .034; 7/10 surviving at 4 h) or GTKO.homoCD46.hCD55 lungs (>240 min, p = .001; 6/6 surviving at 4 h). Homozygosity was associated with increased capillary expression of hCD46 (p < .0001). Increased hCD46 expression was associated with significantly prolonged lung survival (p = .048),) but surprisingly not with reduction in measured complement factor C3a. Hematocrit, monocyte count, and pulmonary vascular resistance were not significantly altered in association with increased hCD46 gene dose or protein expression. CONCLUSION: Genetic engineering approaches designed to augment hCPRP activity - increasing the expression of hCD46 through homozygosity or co-expressing hCD55 with hCD46 - were associated with prolonged GTKO lung xenograft survival. Increased expression of hCD46 was associated with reduced coagulation cascade activation, but did not further reduce complement activation relative to lungs with relatively low CD46 expression. We conclude that coagulation pathway dysregulation contributes to injury in GTKO pig lung xenografts perfused with human blood, and that the survival advantage for lungs with increased hCPRP expression is likely attributable to improved endothelial thromboregulation.
Assuntos
Pulmão , Animais , Suínos , Humanos , Animais Geneticamente Modificados , Transplante Heterólogo , Xenoenxertos , PerfusãoRESUMO
INTRODUCTION: Multiple perfusion systems have been investigated on vascularized composite allografts, with various temperatures and different preservation solutions, most using continuous flow (CF). However, physiological flow is pulsatile and provides better outcomes in kidney and lung ex vivo perfusions. The objective of this pilot study is to compare pulsatile flow (PF) with CF in our 24-h subnormothermic machine perfusion protocol for swine hindlimbs. METHODS: Partial hindlimbs were harvested from Yorkshire pigs and perfused with a modified Steen solution at 21°C for 24 h either with CF (n = 3) or with pulsatile flow (PF) at 60 beats/min (n = 3). Perfusion parameters, endothelial markers, and muscle biopsies were assessed at different timepoints. RESULTS: Overall, lactate levels were significantly lower in the PF group (P = 0.001). Glucose uptake and potassium concentration were similar in both groups throughout perfusion. Total nitric oxide levels were significantly higher in the PF group throughout perfusion (P = 0.032). Nitric oxide/endothelin-1 ratio also tends to be higher in the PF group, reflecting a potentially better vasoconductivity with PF, although not reaching statistical significance (P = 0.095). Arterial resistances were higher in the PF group (P < 0.001). Histological assessment did not show significant difference in muscular injury between the two groups. Weight increased quicker in the CF group but reached similar values with the PF after 24 h. CONCLUSIONS: This pilot study suggests that PF may provide superior preservation of vascularized composite allografts when perfused for 24 h at subnormothermic temperatures, with potential improvement in endothelial function and decreased ischemic injury.
Assuntos
Aloenxertos Compostos , Preservação de Órgãos , Suínos , Animais , Projetos Piloto , Preservação de Órgãos/métodos , Fluxo Pulsátil/fisiologia , Óxido Nítrico , Perfusão/métodosRESUMO
Rationale: The leading cause of death in coronavirus disease 2019 (COVID-19) is severe pneumonia, with many patients developing acute respiratory distress syndrome (ARDS) and diffuse alveolar damage (DAD). Whether DAD in fatal COVID-19 is distinct from other causes of DAD remains unknown. Objective: To compare lung parenchymal and vascular alterations between patients with fatal COVID-19 pneumonia and other DAD-causing etiologies using a multidimensional approach. Methods: This autopsy cohort consisted of consecutive patients with COVID-19 pneumonia (n = 20) and with respiratory failure and histologic DAD (n = 21; non-COVID-19 viral and nonviral etiologies). Premortem chest computed tomography (CT) scans were evaluated for vascular changes. Postmortem lung tissues were compared using histopathological and computational analyses. Machine-learning-derived morphometric analysis of the microvasculature was performed, with a random forest classifier quantifying vascular congestion (CVasc) in different microscopic compartments. Respiratory mechanics and gas-exchange parameters were evaluated longitudinally in patients with ARDS. Measurements and Main Results: In premortem CT, patients with COVID-19 showed more dilated vasculature when all lung segments were evaluated (P = 0.001) compared with controls with DAD. Histopathology revealed vasculopathic changes, including hemangiomatosis-like changes (P = 0.043), thromboemboli (P = 0.0038), pulmonary infarcts (P = 0.047), and perivascular inflammation (P < 0.001). Generalized estimating equations revealed significant regional differences in the lung microarchitecture among all DAD-causing entities. COVID-19 showed a larger overall CVasc range (P = 0.002). Alveolar-septal congestion was associated with a significantly shorter time to death from symptom onset (P = 0.03), length of hospital stay (P = 0.02), and increased ventilatory ratio [an estimate for pulmonary dead space fraction (Vd); p = 0.043] in all cases of ARDS. Conclusions: Severe COVID-19 pneumonia is characterized by significant vasculopathy and aberrant alveolar-septal congestion. Our findings also highlight the role that vascular alterations may play in Vd and clinical outcomes in ARDS in general.
Assuntos
COVID-19 , Pneumonia , Síndrome do Desconforto Respiratório , Doenças Vasculares , COVID-19/complicações , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/etiologiaRESUMO
BACKGROUND: To seek insights into the pathogenesis of chronic active antibody-mediated rejection (CAMR), we performed mRNA analysis and correlated transcripts with pathologic component scores and graft outcomes. METHODS: We utilized the NanoString nCounter platform and the Banff Human Organ Transplant gene panel to quantify transcripts on 326 archived renal allograft biopsy samples. This system allowed correlation of transcripts with Banff pathology scores from the same tissue block and correlation with long-term outcomes. RESULTS: The only pathology score that correlated with AMR pathways in CAMR was peritubular capillaritis (ptc). C4d, cg, g, v, i, t, or ci scores did not correlate. DSA-negative CAMR had lower AMR pathway scores than DSA-positive CAMR. Transcript analysis in non-CAMR biopsies yielded evidence of increased risk of later CAMR. Among 108 patients without histologic CAMR, 23 developed overt biopsy-documented CAMR within 5 years and as a group had higher AMR pathway scores (P=3.4 × 10-5). Random forest analysis correlated 3-year graft loss with elevated damage, innate immunity, and macrophage pathway scores in CAMR and TCMR. Graft failure in CAMR was associated with TCMR transcripts but not with AMR transcripts, and graft failure in TCMR was associated with AMR transcripts but not with TCMR transcripts. CONCLUSIONS: Peritubular capillary inflammation and DSA are the primary drivers of AMR transcript elevation. Transcripts revealed subpathological evidence of AMR, which often preceded histologic CAMR and subpathological evidence of TCMR that predicted graft loss in CAMR.