RESUMO
Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).
RESUMO
Previously, we reported a guest molecule containing a viologen (V), a phenylene (P) and an imidazole (I) fragment (VPI) forming a host : guest 2 : 2 complex with cucurbit[8]uril (CB[8]) and an unprecedented 2 : 3 complex with cucurbit[10]uril (CB[10]). To better address the structural features required to form these complexes, two VPI analogues were designed and synthesized: the first with a tolyl (T) group grafted on the V part (T-VPI) and the second with a naphthalene (N) fused on the imidazole (I) part (VPI-N). While VPI-N afforded a discrete well-defined 2 : 2 complex with CB[8] and a 2 : 3 complex with CB[10], T-VPI organized also as a 2 : 2 complex with CB[8] but no well-defined complex was obtained with CB[10]. These complexes were studied by NMR spectroscopy, notably DOSY, which allowed us to estimate binding constants for 2 : 2 complex formation with CB[8], pointing to more stable 2 : 2 complexes with more hydrophobic guests. UV-vis and fluorescence spectroscopy confirmed complex formation, suggesting host-stabilized charge-transfer interactions. Therefore, the simple addition of CB[8] or CB[10] enabled us to control the level of guest stacking (dimer or trimer) using relevant pairs of synthetic hosts through spontaneous host : guest quaternary or quinary self-assembly.
RESUMO
The globular and monocationic guest molecule trimethyl-azaphosphatrane (AZAP, a protonated Verkade superbase) was shown to form a host:guest 1 : 1 complex with the cucurbit[10]uril (CB[10]) macrocycle in water. Molecular dynamics calculations showed that CB[10] adopts an 8-shape with AZAP occupying the majority of the internal space, CB[10] contracting around AZAP and leaving a significant part of the cavity unoccupied. This residual space was used to co-include planar and monocationic co-guest (CG) molecules, affording heteroternary CB[10]â AZAPâ CG complexes potentially opening new perspectives in supramolecular chemistry.
RESUMO
We report here the development of a rotating molecular switch based on metal-catalyzed reversible (de)-hydrogenation. Under an argon atmosphere, acceptorless dehydrogenation induces a switch from an alcohol to a ketone, while reversing to a hydrogen pressure switches back the system to the alcohol. Based on a tolane scaffold, such reversible (de)-hydrogenation enables 180° rotation. The absence of waste accumulation in a switch relying on chemical stimuli is of great significance and could potentially be applied to the design of efficient complex molecular machines.
RESUMO
A class of rotaxane is created, not by encapsulating a conventional linear thread, but rather by wrapping a large cucurbit[10]uril macrocycle about a three-dimensional, cylindrical, nanosized, self-assembled supramolecular helicate as the axle. The resulting pseudo-rotaxane is readily converted into a proper interlocked rotaxane by adding branch points to the helicate strands that form the surface of the cylinder (like branches and roots on a tree trunk). The supramolecular cylinder that forms the axle is itself a member of a unique and remarkable class of helicate metallo-drugs that bind Y-shaped DNA junction structures and induce cell death. While pseudo-rotaxanation does not modify the DNA-binding properties, proper, mechanically-interlocked rotaxanation transforms the DNA-binding and biological activity of the cylinder. The ability of the cylinder to de-thread from the rotaxane (and thus to bind DNA junction structures) is controlled by the extent of branching: fully-branched cylinders are locked inside the cucurbit[10]uril macrocycle, while cylinders with incomplete branch points can de-thread from the rotaxane in response to competitor guests. The number of branch points can thus afford kinetic control over the drug de-threading and release.
Assuntos
DNA/química , Metais/química , Nanoestruturas/química , Rotaxanos/química , Hidrocarbonetos Aromáticos com Pontes/química , Complexos de Coordenação/química , Imidazóis/química , LigantesRESUMO
Triangular shapes have inspired scientists over time and are common in nature, such as the flower petals of oxalis triangularis, the triangular faces of tetrahedrite crystals, and the icosahedron faces of virus capsids. Supramolecular chemistry has enabled the construction of triangular assemblies, many of which possess functional features. Among these structures, cucurbiturils have been used to build supramolecular triangles, and we recently reported paramagnetic cucurbit[8]uril (CB[8]) triangles, but the reasons for their formation remain unclear. Several parameters have now been identified to explain their formation. At first sight, the radical nature of the guest was of prime importance in obtaining the triangles, and we focused on extending this concept to biradicals to get supramolecular hexaradicals. Two sodium ions were systematically observed by ESI-MS in trimer structures, and the presence of Na+ triggered or strengthened the triangulation of CB[8]/guest 1:1 complexes in solution. X-ray crystallography and molecular modeling have allowed the proposal of two plausible sites of residence for the two sodium cations. We then found that a diamagnetic guest with an H-bond acceptor function is equally good at forming CB[8] triangles. Hence, a guest molecule containing a ketone function has been precisely triangulated thanks to CB[8] and sodium cations as determined by DOSY-NMR and DLS. A binding constant for the triangulation of 1:1 to 3:3 complexes is proposed. This concept has finally been extended to the triangulation of ditopic guests toward network formation by the reticulation of CB[8] triangles using dinitroxide biradicals.
Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Modelos Moleculares , Conformação MolecularRESUMO
A viologen derivative carrying a benzimidazole group (V-P-I 2+ ; viologen-phenylene-imidazole V-P-I) can be dimerized in water using cucurbit[8]uril (CB[8]) in the form of a 2:2 complex resulting in a negative shift of the guest pKa , by more than 1â pH unit, contrasting with the positive pKa shift usually observed for CB-based complexes. Whereas 2:2 complex protonation is unclear by NMR, silver cations have been used for probing the accessibility of the imidazole groups of the 2:2 complexes. The protonation capacity of the buried imidazole groups is reduced, suggesting that CB[8] could trigger proton release upon 2:2 complex formation. The addition of CB[8] to a solution containing V-P- I3+ indeed released protons as monitored by pH-metry and visualized by a coloured indicator. This property was used to induce a host/guest swapping, accompanied by a proton transfer, between V-P-I 3+ â CB[7] and a CB[8] complex of 1-methyl-4-(4-pyridyl)pyridinium. The origin of this negative pKa shift is proposed to stand in an ideal charge state, and in the position of the two pH-responsive fragments inside the two CB[8] which, alike residues engulfed in proteins, favour the deprotonated form of the guest molecules. Such proton release triggered by a recognition event is reminiscent of several biological processes and may open new avenues toward bioinspired enzyme mimics catalyzing proton transfer or chemical reactions.
RESUMO
Three new DEPMPO-based spin traps have been designed and synthesized for improved superoxide detection, each carrying a cyclodextrin (CD) moiety but with a different alkyl chain on the phosphorus atom or with a long spacer arm. EPR spectroscopy allowed us to estimate the half-life of the superoxide spin adducts which is close to the value previously reported for CD-DEPMPO (t1/2 ≈ 50-55 min under the conditions investigated). The spectra are typical of superoxide adducts (almost no features of the HOË adduct that usually forms with time for other nitrone spin traps such as DMPO) and we show that at 250 µM, the new spin trap enables the reliable detection of superoxide by 1 scan at the position opposite to the corresponding spin trap without the CD moiety. The resistance of the spin adducts to a reduction process has been evaluated, and the superoxide spin adducts are sensitive to ascorbate and glutathione (GSH), but not to glutathione peroxidase/GSH, reflecting the exposed nature of the nitroxide moiety to the bulk solvent. To understand these results, 2D-ROESY NMR studies and molecular dynamics pointed to a shallow or surface self-inclusion of the nitrone spin traps and of nitroxide spin adducts presumably due to the high flexibility of the permethyl-ß-CD rim.
Assuntos
Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/síntese química , Marcadores de Spin , Superóxidos/análise , Superóxidos/química , beta-Ciclodextrinas/química , Ácido Ascórbico/química , Técnicas de Química Sintética , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/química , Cinética , Limite de Detecção , Conformação Molecular , Simulação de Dinâmica MolecularRESUMO
We describe a photochemical method to introduce a single alcohol function directly on cucurbit[n]urils (n = 5, 6, 7, 8) with conversions of the order 95-100% using hydrogen peroxide and UV light. The reaction was easily scaled up to 1 g for CB[6] and CB[7]. Spin trapping of cucurbituril radicals combined with MS experiments allowed us to get insights about the reaction mechanism and characterize CB[5], CB[6], CB[7], and CB[8] monofunctional compounds. Experiments involving (18)O isotopically labeled water indicated that the mechanism was complex and showed signs of both radical and ionic intermediates. DFT calculations allowed estimating the Bond Dissociation Energies (BDEs) of each hydrogen atom type in the CB series, providing an explanation of the higher reactivity of the "equatorial" C-H position of CB[n] compounds. These results also showed that, for CB[8], direct functionalization on the cucurbituril skeleton is more difficult because one of the methylene hydrogen atoms (Hb) has its BDE lowering within the series and coming close to that of Hc, thus opening the way to other types of free radicals generated on the CB[8] skeleton leading to several side products. Yet CB[5]-(OH)1 and CB[8]-(OH)1, the first CB[8] derivative, were obtained in excellent yields thanks to the soft method presented here.
RESUMO
The flexible tetranitroxide 4T has been prepared and was shown to exhibit a nine line EPR spectrum in water, characteristic of significant through space spin exchange (J(ij)) between four electron spins interacting with four nitrogen nuclei (J(ij) â« a(N)). Addition of CB[8] to 4T decreases dramatically all the Jij couplings, and the nine line spectrum is replaced by the characteristic three line spectrum of a mononitroxide. The supramolecular association between 4T and CB[8] involves a highly cooperative asymmetric complexation by two CB[8] (K1 = 4027 M(-1); K2 = 202,800 M(-1); α = 201) leading to a rigid complex with remote nitroxide moieties. The remarkable enhancement for the affinity of the second CB[8] corresponds to an allosteric interaction energy of ≈13 kJ mol(-1), which is comparable to that of the binding of oxygen by hemoglobin. These results are confirmed by competition and reduction experiments, DFT and molecular dynamics calculations, mass spectrometry, and liquid state NMR of the corresponding reduced complex bearing hydroxylamine moieties. This study shows that suitably designed molecules can generate allosteric complexation with CB[8]. The molecule must (i) carry several recognizable groups for CB[8] and (ii) be folded so that the first binding event reorganizes the molecule (unfold) for a better subsequent recognition. The presence of accessible protonable amines and H-bond donors to fit with the second point are also further stabilizing groups of CB[8] complexation. In these conditions, the spin exchange coupling between four radicals has been efficiently and finely tuned and the resulting allosteric complexation induced a dramatic stabilization enhancement of the included paramagnetic moieties in highly reducing conditions through the formation of the supramolecular 4T@CB[8]2 complex.
Assuntos
Sítio Alostérico , Óxidos N-Cíclicos/química , Óxido Nítrico/química , Receptores Artificiais/química , Água/química , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Modelos MolecularesRESUMO
A viologen-phenylene-imidazole (VPI) conjugate, previously shown to be singly complexed by CB[7] and doubly bound by CB[8], is herein shown to form antiparallel triple stacks in water with cucurbit[10]uril (CB[10]), pairwise complexing the guest trimer. The quinary host:guest 2:3 complex showed features assignable to charge-transfer interactions. Under reductive conditions, CB[10] could solubilize a VPI radical, even though CB[10] and reduced VPI are almost insoluble, thereby illustrating a possible new application for CB[10].
RESUMO
The polytopic hemicryptophane cage HC1 combining a cyclotriveratrylene (CTV) unit and a tris(2-aminoethyl)amine (tren) moiety connected by three 2-hydroxyisophthalamide linkers was synthesized in 12 steps. The resulting highly functionalized covalent host is soluble in aqueous medium and has been used to complex Gd(III) ion. The Gd(III)@HC1 complex presents promising relaxivity properties when compared to the clinically used Dotarem MRI agent.
RESUMO
A molecular switch built with cucurbit[7]uril and a 3-station viologen-phenylene-imidazole compound exhibited pH actuated ring translocation with high fatigue resistance (up to 102 cycles). The switch movement was harnessed toward selectively masking the toxicity of the viologen fragment at neutral pH near non-cancerous cells, while exposing it at acid pH near cancer cells.
Assuntos
Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Imidazóis/farmacologia , Neoplasias/tratamento farmacológico , Viologênios/farmacologia , Animais , Antineoplásicos/química , Hidrocarbonetos Aromáticos com Pontes/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/química , Camundongos , Células RAW 264.7 , Viologênios/químicaRESUMO
Among a series of metal ions in water, silver is the only one to remotely and reversibly switch cucurbit[7]uril (CB[7]) movements (translocation or uptake) on a rigid and linear three-station viologen-phenylene-imidazole ( V-P-I) derivative, avoiding undesired pH actuation. 1H NMR, UV-vis spectroscopy, mass spectrometry, ITC, and modeling were combined to show that ring translocation or uptake along a molecular thread is possible in water by Ag+ as a metal stimulus.
RESUMO
This work describes latent fluorescence particles (LFPs) based on a new environmentally sensitive carbazole compound aggregated in water and their use as sensors for probing various cavitands and the different stages of aggregating systems. Cyclodextrins (CDs), cucurbit[n]urils (CB[n], n = 6, 7, 8), and a resorcinarene capsule were used to study the dynamic nature of the LFPs. The fluorescence was dramatically enhanced by a proposed disaggregation-induced emission enhancement (DIEE) mechanism with specific features for CB[n]. Then, the aggregated states of the dipeptides Leu-Leu, Phe-Phe, and Fmoc-Leu-Leu (vesicles, crystals, fibers) were studied by fluorescence spectroscopy and confocal fluorescence microscopy thanks to the adaptive and emissive behavior of the LFPs, allowing us to study an interesting polymorphism phenomenon. The LFPs have then been used in the sensing of the aggregation of the polysaccharide alginate, for which distinct fluorescence turn-on is detected upon stepwise biopolymer assembly, and for amylose detection. The carbazole particles not only adapt to various environments but also display multicolor fluorescent signals. They can be used for the fast probing of the aggregation propensity of newly prepared molecules or biologically relevant compounds or to accelerate the discovery of new macrocycles or of self-assembling peptides in water.
RESUMO
Twenty novel beta-secretase inhibitors containing biarylpiperazine moieties belonging to naphthyl and coumarinyl series were designed for their potential use in Alzheimer's disease therapy. Enzymatic and cell-based assays have been carried out. The biological results clearly demonstrate that specific substituents located at the N(4)-position of the piperazine ring result in excellent in vitro inhibitory potency (IC(50) values ranging between 40 and 70 nM). Variable temperature NMR and modeling studies are consistent with the obtained biological data, since these studies confirmed that introduction at the N(4)-position of the piperazine ring allows productive interactions within the BACE-1 active site, which appear to be determinative for high BACE-1 inhibitory activity. These results are of particular interest since some of the new analogues belonging to the naphthyl series are almost one log more active than the best inhibitor of the similar family recently reported.